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CONTENT SERVICE AGGREGATION
SYSTEM

CLAIM OF PRIORITY

This application is a Continuation of U.S. application Ser.
No. 12/843,710, filed Jul. 26, 2010, which is a Continuation
of U.S. application Ser. No. 11/983,135, filed Nov. 7, 2007,
now U.S. Pat. No. 7,765,328, which is a Continuation of U.S.
application Ser. No. 10/191,742, filed Jul. 8, 2002, now U.S.
Pat. No. 7,305,492, which claims the benefit of U.S. Provi-
sional Application No. 60/303,354, filed Jul. 6, 2001, the
entire content of each of which is incorporated herein by
reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This disclosure relates to computer networks and, in par-
ticular, managing subscriber packet flows within a network
data center.

2. Description of the Related Art

The worldwide system of computer networks known as the
Internet has provided business and individuals with a new
mechanism for supplying goods and services, and conducting
commerce. As the number and type of network services used
on the Internet have grown, so has the strain that providing
such services places on businesses. As the number, complex-
ity and interaction of inter-networked services has risen, the
associated costs of building and maintaining a network infra-
structure to support those services have grown as well. Many
enterprises have thus turned outsourced vendors, sometimes
called managed service providers or data centers, to provide
these services in lieu of building and maintaining the infra-
structure themselves. Customers of such managed service
providers are often called subscribers.

The managed service provider can operate in many difter-
ent ways. Typically it can provide secure facilities where the
infrastructure service equipment is located, and manage
equipment for the subscriber. The scope of management and
services is defined by an agreement with the subscriber call-
ing for the managed service provider to solely or jointly
manage the equipment with the subscriber. This is sometimes
referred to as “co-location”. In other cases, the managed
service provider can lease the physical space from another
provider (called a hosting provider) and provide just the man-
agement of the infrastructure equipment on behalf of its sub-
scribers.

A data center is a specialized facility that houses Web sites
and provides data serving and other services for subscribers.
The data center may contain a network operations center
(NOC), which is a restricted access area containing auto-
mated systems that constantly monitor server activity, Web
traffic, and network performance. A data center in its most
simple form may consist of a single facility that hosts all of
the infrastructure equipment. However, a more sophisticated
data center is normally an organization spread throughout the
world with subscriber support equipment located in various
physical hosting facilities.

Data centers allow enterprises to provide a number of dif-
ferent types of services, including e-commerce services to
customers; extranets and secure Virtual Private Networks
(VPNs) to employees and customers; firewall protection and
Network Address Translation (NAT) services, Web caching
and load balancing services, as well as many others. These
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services can all be provided at an off-site facility in the data
center without requiring the enterprise to maintain the facility
itself.

A typical data center facility will house physical hardware
in a number of equipment racks, generally known as “cages”,
which hold networking equipment and servers which are
operated by the data center on behalf of the subscriber. Gen-
erally, the subscriber maintains the content and control over
the servers, while contracting with the data center to provide
services such as maintenance and service configuration. It
should be well understood that there are myriad ways in
which subscribers can arrange their relationships with data
centers.

The equipment that provides the infrastructure services for
a set of subscribers can take several forms. Depending on the
complexity and variety of services required, the equipment
generally includes one or more single function devices dedi-
cated to the subscriber. Generally, because the devices are
designed with the co-location model in mind—customers
leasing rack space and pieces of equipment as needed—
service devices generally include the ability to provide only
one or a few services via the device. Typical multi-function
devices that do combine services combine those that are
closely related, such as NAT and firewall services. A data
center facility generally has a number of devices to manage,
and in many case the devices multiply as redundant devices
may be used for fail over security to provide fault-tolerance or
for load balancing.

Normally, services such as NAT, Firewall and VPN are
provided by specialized computers or special function appli-
ances at the subscribers site. In oftloading the services to a
data center, the data center will use specialized appliances or
servers coupled to the subscribers Web servers in the cages to
implement special functions for the subscribers. These appli-
ances can include service provision devices and the subscrib-
er’s application servers as well as other specialized equip-
ment for implementing the subscriber’s service structure. The
cages may thus include network appliances dedicated to one
or more of the following tasks: routing, firewall, network
address translation, Secure Sockets Layer (SSL) acceleration,
virtual private networking, public key infrastructure (PKI),
load balancing, Web caching, or the like. As a result, the
management of all subscribers within the data center
becomes very complex and expensive with many different
management interfaces for all of the subscribers and sub-
scriber devices. Administering the equipment in each cage is
generally accomplished via an administrative access inter-
face coupled to each single function device. An example of
one prior art architecture used in a data center is shown in
FIG. 1. In this example, a plurality of individual service
appliances 24, each providing a different type of IP service,
are coupled to a network 20 (in this case it is the Internet) and
a local LAN 21, which is a high speed local network secure
within the data center. The local LAN may couple each of'the
appliances to each other, as well as various subscriber servers
25. Each of the individual appliances 24 performs only some
limited form of processing which is specific to the service
function it is designed to provide. In addition, this type of
architecture is difficult to manage since each device 24 has its
own configuration interface 26. All service set-up parameters
must be made within each device. Indeed, each appliance may
be provided by a different manufacturer and hence have its
own configuration paradigm.

In general, each of these appliances 24 works on network
data packets carried in the network using TCP/IP protocol.
The data is routed between appliances using the full TCP/IP
stack, requiring that each appliance process the entire stack in
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order to apply the service that the appliance is designed to
provide. This results in a large degree of processing overhead
just in dealing with the transmission aspects of the data. To
combat these problems, some network equipment manufac-
turers have built multi-service devices capable of providing
additional IP level services in one physical package. Typi-
cally, however, these devices couple network coupled “line
cards” designed to provide the particular value added service
to the network with some form of central processor, with the
combination being generally organized into multi-service
routing device. The compute elements on the line cards have
limited or specialized processing capability, and all services
set-up and advanced processing must go through the central
processing card. Such service set-up is sometimes called
“slow path” processing, referring to that occurs infrequently
or is complex, such as exception packet handling, while more
routine functions are performed by the appliances them-
selves.

An example of this type of system is shown in FIG. 2. In the
system shown in FIG. 2, a central processor 30 controls and
performs all service implementation functions, with some
routing via other appliances coupled to the fabric. In this
architecture, the service processing is limited to the speed and
throughput of the processor.

An important drawback to the systems of the prior art such
as those shown in FIG. 1 and FIG. 2 is that processing of
application services requires each line card to perform the full
IP stack functions. That is, each card must perform IP pro-
cessing and routing to perform the network service on the data
carried by the IP packet. Any packet entering the line card
must be processed through the IP, TCP and HTTP level, the
data processed, and the packet re-configured with proper TCP
and IP information before being forwarded on.

A second important drawback of these systems is that they
perform processing on only one flow of packets at a time. That
is, the central processor of the embodiment of FIG. 2 is a
bottleneck for system performance.

SUMMARY OF THE INVENTION

The invention, roughly described, comprises an architec-
ture for controlling a multiprocessing system to provide a
network service to network data packets using a plurality of
compute elements. In one aspect, a single service is provided
by multiple compute elements. In a second aspect, multiple
services are provided by multiple elements. In one embodi-
ment, the invention may comprise a management compute
element including service set-up information for at least one
service; and at least one processing compute element com-
municating service set-up information with the management
compute element in order to perform service specific opera-
tions on data packets. This embodiment may further include a
flow element, directing data packets to the at least one pro-
cessing compute element.

The system control architecture providing multiple net-
work IP services to networked data in a multiprocessing
system, the multiprocessing system having a plurality of
compute elements, comprising code provided on a first com-
pute element causing the compute element to function as a
control compute element maintaining multi-service manage-
ment information and service configuration instructions; and
service processing code provided on at least a second com-
pute element causing said second compute element to func-
tion as a service processing element performing service spe-
cific instructions responsive to the control compute element
on data transmitted to the service processing element.
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The system control architecture of claim 2 further includ-
ing code, provided on a third compute element, causing said
third compute element to function as a flow stage compute
element communicating with the control compute element
and the service processing element.

In a further aspect, the system may comprise a method of
controlling a processing system including a plurality of pro-
cessors. The method may include the steps of operating at
least one of said processing units as a control authority includ-
ing service provisioning information for a subscriber; and
operating a set of processors as service specific compute
elements responsive to the control authority, receiving provi-
sioning information from the subscriber and performing ser-
vice specific instructions on data packets to provide content
services. In this embodiment, data packets having common
attributes including a common subscriber may be (but need
not be) organized in a flow and processed by the set of pro-
cessors, with each flow being bound to the same set of pro-
cessors. Each subscriber may have multiple flows.

In a still further embodiment of the invention, a method of
operating a multiprocessor system is disclosed. The method
may comprise operating at least one processor as a control
authority storing information on configuration of a plurality
of network services, operating at least a second processor as
a compute element for one of said services, and transmitting
selected information on the configuration of the services to
the compute element to operate the compute element to per-
form calculations on the service.

In a still further aspect, the invention may comprise system
for processing content services using a processing pipeline in
a multi-processor system. In this embodiment, the invention
includes at least one processor comprising a Control Author-
ity having service specific data and instructions; a plurality of
service specific processors arranged in a processing pipeline
and coupled by a switching fabric, communicating with the
Control Authority to receive set-up information and perform
service specific instructions on packet data; and a flow pro-
cessor directing network traffic to the service specific proces-
sors. In this embodiment, the data input to the architecture is
organized as a flow, and each flow is bound to a processing
pipeline for service specific operations.

The present invention can be accomplished using hard-
ware, software, or a combination of both hardware and soft-
ware. The software used for the present invention is stored on
one or more processor readable storage media including hard
disk drives, CD-ROMSs, DVDs, optical disks, floppy disks,
tape drives, RAM, ROM or other suitable storage devices. In
alternative embodiments, some or all of the software can be
replaced by dedicated hardware including custom integrated
circuits, gate arrays, FPGAs, PLDs, and special purpose com-
puters.

These and other objects and advantages of the present
invention will appear more clearly from the following
description in which the preferred embodiment of the inven-
tion has been set forth in conjunction with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be described with respect to the particu-
lar embodiments thereof. Other objects, features, and advan-
tages of the invention will become apparent with reference to
the specification and drawings in which:

FIG. 1 depicts a first prior art system for providing a plu-
rality of network services to a subscriber.

FIG. 2 depicts a second prior art system for providing a
plurality of network services to a subscriber.
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FIG. 3 depicts a general hardware embodiment suitable for
use with the service provision architecture of the present
invention

FIG. 4 depicts a second hardware embodiment suitable for
use with the service provision architecture of the present
invention.

FIG. 5 is a block diagram illustrating the software system
architecture of the control system of the present invention.

FIG. 6a is a block diagram illustrating the fast path and
slow path processing of packets in the system of the present
invention.

FIG. 654 is a diagram illustrating one of the data structures
used in the system of the present invention.

FIG. 7a is a block diagram depicting the functional soft-
ware modules applied to various processors on a dedicated
processing pipeline in accordance with the present invention.

FIG. 7b is a block diagram depicting functional software
modules applied to various processors in an input/output pipe
in accordance with the present invention.

FIG. 8 is a flowchart depicting processes running in a
processing element designated as a control authority proces-
sor and the classification of traffic to processes running in the
control authority processor.

FIG. 9 is a flowchart depicting the flow classification uti-
lized by one input processing element to classify a flow of
data packets in accordance with the present invention.

FIG. 10 is a flowchart depicting processing occurring in a
virtual private network processing stage of the system of the
present invention.

FIG. 11 is a flowchart depicting processing occurring in
one pipeline of processing elements in accordance with the
system of the present invention.

FIG. 12 is a block level overview of VPN processing occur-
ring in the system of the present invention and the communi-
cation between various stages and modules.

FIG. 13 is a flowchart representing processing in accor-
dance with the VPN processing stage using IKE and PKI.

FIG. 14 is a flowchart representing processing of a packet
after completion of the encryption and decryption in the
packet processing stage of FIG. 13.

FIG. 15 is a diagram illustrating the data structures config-
ured by the BSD processors running in the control authority.

FIG. 15a is a diagram illustrating the virtual routing func-
tions of the system of the present invention.

FIG. 16 illustrates a multi-processor unit in accordance
with the present invention.

FIG. 17 illustrates a process employed by the multi-pro-
cessor unitin FIG. 16 to exchange data in accordance with the
present invention.

FIG. 18 shows a processing cluster employed in one
embodiment of the multi-processor unit in FIG. 16.

FIG. 19 shows a processing cluster employed in another
embodiment of the multi-processor unit in FIG. 16.

FIG. 20q illustrates a first tier data cache pipeline in one
embodiment of the present invention.

FIG. 205 illustrates a first tier instruction cache pipeline in
one embodiment of the present invention.

FIG. 21 illustrates a second tier cache pipeline in one
embodiment of the present invention.

FIG. 22 illustrates further details of the second tier pipeline
shown in FIG. 21.

FIG. 23a illustrates a series of operations for processing
network packets in one embodiment of the present invention.

FIG. 235 illustrates a series of operations for processing
network packets in an alternate embodiment of the present
invention.
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FIGS. 24a-24¢ show embodiments of a coprocessor for use
in a processing cluster in accordance with the present inven-
tion.

FIG. 25 shows an interface between a CPU and the copro-
cessors in FIGS. 24a-24c.

FIG. 26 shows an interface between a sequencer and appli-
cation engines in the coprocessors in FIGS. 24a-24c.

FIG. 27 shows one embodiment of a streaming input
engine for the coprocessors shown in FIGS. 24a-24c.

FIG. 28 shows one embodiment of a streaming output
engine for the coprocessors shown in FIGS. 24a-24c.

FIG. 29 shows one embodiment of alignment circuitry for
use in the streaming output engine shown in FIG. 28.

FIG. 30 shows one embodiment of a reception media
access controller engine in the coprocessor shown in FIG.
24c.

FIG. 31 illustrates a packet reception process in accordance
with the present invention.

FIG. 32 shows a logical representation of a data manage-
ment scheme for received data packets in one embodiment of
the present invention.

FIG. 33 shows one embodiment of a transmission media
access controller engine in the coprocessors shown in FIG.
24c.

FIG. 34 illustrates a packet transmission process in accor-
dance with one embodiment of the present invention.

FIG. 35 illustrates a packet transmission process in accor-
dance with an alternate embodiment of the present invention.

FIG. 36 depicts a system employing cross-bar switches in
accordance with the present invention.

FIG. 37 shows one embodiment of a cross-bar switch in
accordance with the present invention.

FIG. 38 shows a process employed by a cross-bar switch in
accordance with the present invention.

FIG. 39 illustrates an alternate embodiment of a cross-bar
in accordance with the present invention.

FIG. 40 depicts a block diagram for an input port in the
cross-bar switches shown in FIGS. 37 and 39.

FIG. 41 depicts a block diagram for a sink port in the
cross-bar switches shown in FIGS. 37 and 39.

FIG. 42 shows a process employed by the sink port
depicted in FIG. 41 for accepting and storing data.

FIG. 43 shows a block diagram for the multi-sink port
depicted in FIG. 39.

FIG. 44 shows a process employed by the multi-sink port
depicted in FIG. 43 for transferring packet data to sink ports.

FIG. 45 illustrates a bandwidth allocation process
employed by a cross-bar switch in accordance with the
present invention.

DETAILED DESCRIPTION

1. Control Architecture

The present invention provides an architecture for control-
ling a content services aggregator—a device which provides
anumber of network services. The architecture is designed to
provide the services on a multi-processor system. In one
aspect, the invention comprises a software architecture com-
prised of an operating paradigm optimized for packet routing
and service processing using multiple compute elements
coupled through a switching fabric and control backplane.

Various embodiments of the present invention will be pre-
sented in the context of multiple hardware architectures. It
should be recognized that the present invention is not limited
to use with any particular hardware, but may be utilized with
any multiple compute element architecture allowing for rout-
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ing of packets between compute elements running compo-
nents of the invention as defined herein.

In the following detailed description, the present invention
is described by using flow diagrams to describe either the
structure or the processing that implements the method of the
present invention. Using this manner to present the present
invention should not be construed as limiting of'its scope. The
present invention contemplates both methods and systems for
controlling a multiprocessor system, for implementing con-
tent services to a multitude of subscribers coupled to the
multiprocessing system, and for distributing the provision of
such services across a number of compute elements. In one
embodiment, the system and method of the invention can be
implemented on general-purpose computers. The currently
disclosed system architecture may also be implemented with
a number of special purpose systems.

Embodiments within the scope of the present invention
also include articles of manufacture comprising program
storage apparatus and having encoded therein program code.
Such program storage apparatus can be any available media
which can be accessed by a general purpose or special pur-
pose computer. By way of example, and not limitation, such
program storage apparatus can comprise RAM, ROM,
EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage or other magnetic storage devices, or any other
medium which can be used to store the desired program code
and which can be accessed by a general purpose or special
purpose computer. Combinations of any of the above are also
included within the scope of such program storage means.

Program code comprises, for example, executable instruc-
tions and data which causes a general purpose or special
purpose computer to perform a certain function or functions.
A. Overview

The software architecture of the present invention provides
various content based networking services to subscribers in a
network environment. In one embodiment, the system archi-
tecture of the present invention is designed to run on process-
ing hardware which is located in a network configuration
between a physical layer interface switch and a “Layer 2 IP
switch. The architecture supports multiple subscribers and
multiple subscriber services in accordance with the invention.

A general hardware architecture on which the software
architecture of the present invention may be implemented is
shown in FIG. 3. As shown therein, a plurality of compute
elements are coupled to a switching fabric to allow packets to
traverse the fabric and be routed through means discussed
below to any other compute element coupled to the fabric. It
should be understood that the hardware shown in FIG. 3 may
comprise a portion of a content service aggregation, but does
not illustrate components of the aggregator such as I/O ports,
busses and network interfaces which would be used in such
aggregators.

In general, packets enter the system via the input elements,
get switched via the fabric and travel through one or more
compute elements where the services are rendered and exit
via the output elements. The function of the control system of
the present invention is to route data packets internally within
the system, maintain the data structures which allow the ser-
vices provided by the content services aggregation device to
be performed, and coordinate the flows of data through the
system.

When implemented with a multiprocessor device such as
that shown in FIG. 3, the control architecture of the present
invention provides a content service aggregator which dis-
tributes service provision over a plurality of compute ele-
ments in order to increase the processing performance of the
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device beyond that presently known in the art. In combination
with this distributed processing, any number of compute ele-
ments may be provided.

In the depiction shown in FIG. 3, each compute element
may comprise one or more microprocessors, including any
commercially available microprocessor. Alternatively, the
compute elements may comprise one or more application-
specific integrated circuit processors specifically designed to
process packets in accordance with the network service which
the content service aggregator is designed to provide. Each
compute element in FIG. 3 includes at least a processing unit,
such as a CPU. As discussed below, each compute element
may include a number of CPUs and function specific process-
ing engines. Not detailed in FIG. 3 but utilized in the present
invention is some form of addressable memory. In the imple-
mentation of FIG. 3, the memory may be incorporated into the
compute elements themselves, or provided separately and
may be memory dedicated to and accessible by one processor
or memory shared by many processors.

In FIG. 3, certain elements have been designated as “input
elements”, other elements have been designated as “output
elements”, while still other elements have been designed as
simply “compute” elements. As will become clear after the
reading of'the specification, the designation of the elements as
input, output or compute elements is intended to enable the
reader to understand that certain elements have functions
which are implemented by the software architecture of the
present invention as controlling processing flow (the input/
output elements) and performing service provisioning.

FIG. 4 shows a more specialized hardware configuration
that is suitable for use with the system of the present inven-
tion. In this particular embodiment, the computer elements
100 are a series of multi-CPU compute elements, such as
multi-processor unit 2010 disclosed below with reference to
FIGS. 16-35. Briefly, each element contains a plurality of
CPUs, application specific processing engines, a shared
memory, a sequencer and a MAC.

In addition, the switching fabric is comprised of a plurality
of cross-bar switching elements 200, such as cross-bar
switches 3010 and 3110 described below with reference to
FIGS. 36-45.

In order to implement a content service aggregation device
using the embodiment of FIG. 4, a plurality of compute ele-
ments 100 are organized onto a processing pipeline or
“blade”. Each blade may comprise a physical card having a
series of connectors and connections, including wiring inter-
connecting the compute elements and at least one cross bar
element 200 to a connection plane and other such blades. In
FIG. 4, the system may include two processor pipelines, each
having five compute elements and one switching element
provided thereon, as well as an input output blade including
three compute elements and one switching element 200. The
input/output pipeline processing elements 100 are coupled to
a gigabit Ethernet connection.

Itshould be recognized that the compute elements need not
be provided on the blades, and that different configurations of
input/output schemes are possible. In a further embodiment,
the content services aggregator may include two input blades
and two processing blades or any number of processing and
input blades.

Each blade includes a series of packet path data connec-
tions 115, control path connections 105 and combined data
and control connections 110. The collection of compute ele-
ments on a single blade provides a processing pipeline for
providing the content services. It should be recognized that
the processing pipeline need not be physically separated on a
blade in any particular configuration, but may comprise a
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series of processors linked by a crossbar switch, a grouping of
crossbar switches, or other switching fabric capable of rout-
ing packets in the manner specified in the instant application
to any of the various compute elements coupled to the switch.

As noted above, the hardware suitable for running the
system of the present invention may comprise any multi-
processor system having addressable memory operatively
coupled to each processor. However, the compute elements
shown in FIG. 4, as well as multi-processor unit 2010
described below, each include a central processing unit
coupled to a coprocessor application engine. The application
engines are specifically suited for servicing applications
assigned to the compute engine. This enables different com-
pute engines to be optimized for servicing a number of dif-
ferent applications the content service aggregator will pro-
vide. For example, one compute engine may contain
coprocessor application engines for interfacing with a net-
work, while other coprocessors include different application
engines. The coprocessors also offload associated central pro-
cessing units from processing assigned applications. The
coprocessors perform the applications, leaving the central
processing units free to manage the allocation of applications.
The coprocessors are coupled to a cache memory to facilitate
their application processing. Coprocessors exchange data
directly with cache memory—avoiding time consuming main
memory transfers found in conventional computer systems.
The multi-processor also couples cache memories from dif-
ferent compute engines, allowing them to exchange data
directly without accessing main memory.

As such, the architecture shown in FIG. 4 is particularly
suited for use in a content service aggregation device and, in
accordance with the particular implementations shown in the
co-pending applications, provides a high throughput system
suitable for maintaining a large number of subscribers in a
data center.

Although the particular type of hardware employed in run-
ning the software architecture of the present invention is not
intended to be limiting on the scope of the software control
architecture of the present invention, the invention will be
described with respect to its use in a hardware system
employing a configuration such as that shown in FIG. 4,
where the compute elements are multi-processor unit 2010,
described below with reference to FIGS. 16-35, and the cross-
bar fabric elements are cross-bar switches 3010 or 3110,
described below with reference to FIGS. 36-45.

The control system of the present invention takes into
account the fact that communication overhead between any
two elements is not the same and balances the process for best
overall performance. The control system allows for a dynami-
cally balanced throughput, memory usage and compute ele-
ment usage load among the available elements, taking into
account the asymmetric communications costs. The architec-
ture also scales well for additional processors and groups of
processors. The architecture can host as few as a single sub-
scriber and as many as several thousand subscribers in an
optimal fashion and handles dynamic changes in subscribers
and the bandwidth allocated to them.

There are a number of different types of traffic which are
recognized by the system of the present invention, including
local traffic, remote traffic, control traffic and data traffic, as
well as whether the traffic is inbound to the content services
aggregator or outbound from the aggregator. The processors
of FIG. 3 and the processing pipelines of FIG. 4 may handle
these flows differently in accordance with the system of the
invention.

In one embodiment, each input/output processor on the
blade may have a local and a remote port with Gigabit Eth-
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ernet interfaces. The interfaces fall under one of the following
categories: local port, remote port; trusted management port;
port mirror or inter-device RP. Local ports connect to a trusted
side of the device’s traffic flow (i.e. a cage-side or the sub-
scriber-side) and hence have “local” traffic. Remote ports
connect to the un-trusted side (the internet side) of the
device’s traffic flow. A trusted management port is the out of
band management port used to access the content services
aggregator and is physically secured. Data on this port has no
access control and no firewalls are applied to traffic coming in
from this port. An inter-device RP port is used to connect two
content services aggregators in redundant mode. Port mirror
is a debug feature that duplicates the traffic of a local or
remote port for debugging purposes.

B. Software Hierarchy

As shown in FIG. 5, the software architecture is a four layer
hierarchy which may include: an operating system layer 305,
an internet protocol (IP) stack 320, a service architecture
layer 330 and a network services layer 360. Each layer has a
number of sub-components as detailed below. The top layer is
the content application services layer which includes mod-
ules implementing the various IP services. Those listed in
FIG. 5 are Firewall, Network Address Translation, IP For-
warding (OSPF Routing), bandwidth management, Secure
Sockets Layer processing, Web (or Layer 7) content based
switching, Virtual Private Networking using IPSec, and Web
caching. It should be understood that the number and type of
Web services which may be provided in accordance with the
architecture of the present invention are not limited to those
shown in FIG. 5, and those listed and described herein are for
purposes of example. Additional services may be added to
those shown in FIG. 5 and in any particular implementation,
all services shown in FIG. 5 need not be implemented.

In one embodiment, each processing compute element is
configured to run with the same software configuration,
allowing each processing compute element to be used
dynamically for any function described herein. In an alterna-
tive embodiment, each compute element is configured with
software tailored to the function is designated to perform. For
example, if a compute element is used in providing a particu-
lar service, such as SSL, the processing compute element will
only require that code necessary to provide that service func-
tion and other content services codes need not be loaded on
that processor. The code can be provided by loading an image
of the code at system boot under the control of a Control
Authority processor. It should be further understood that, in
accordance with the description set forth in co-pending U.S.
patent application Ser. No. 09/900,481, filed Jul. 6, 2001 by
Fred Gruner, David Hass, Robert Hathaway, Ramesh Penwar,
Ricardo Ramirez, and Nazar Zaidi, entitled MULTI-PRO-
CESSOR SYSTEM, the compute elements may be tailored to
provide certain computational aspects of each service in hard-
ware, and each service module 360 and service architecture
module 330 may be constructed to take advantage of the
particular hardware configuration on which it is used.

Shown separate from the architecture stack and running on
one or more compute elements, is a NetBSD implementation
that serves as the Control Authority for the system of the
present invention. As will be understood to one of average
skill in the art, NetBSD is a highly portable unix-like operat-
ing system. The NetBSD implementation provides support
and control for the content services running in the content
services aggregator. Although in one implementation, a
single instance of NetBSD running on a single processing
CPU may beutilized, in order to provide a high throughput for
the content services aggregator, multiple instances of Net-
BSD are preferably utilized in accordance with the invention.
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Such multiple instances may be provided on multiple proces-
sors, or, when the system is utilized with the compute element
of co-pending U.S. patent application Ser. No. 09/900,481,
filed Jul. 6, 2001 by Fred Gruner, David Hass, Robert Hatha-
way, Ramesh Penwar, Ricardo Ramirez, and Nazar Zaidi,
entitled MULTI-PROCESSOR SYSTEM, multiple copies of
NetBSD may be provided on a single compute element.

In both examples, the single or multiple copies of NetBSD
running on a single or multiple CPUs respectively, comprise
the “Control Authority” and control the operation of the sys-
tem as a whole. In one implementation, eight copies of Net-
BSD are run on the compute element of co-pending U.S.
patent application Ser. No. 09/900,481, filed Jul. 6, 2001 by
Fred Gruner, David Hass, Robert Hathaway, Ramesh Penwar,
Ricardo Ramirez, and Nazar Zaidi, entitled MULTI-PRO-
CESSOR SYSTEM and are divided into specific tasks where
seven total processors are used and run independent copies of
NetBSD: 3 are dedicated for the OSPF processes; 3 are dedi-
cated for IKE/PKI processes; 1 is dedicated for the manage-
ment processes; and one is a spare.

As the name implies, the Control Authority manages the
system. Specifically, it handles such items as: system bring
up; fault tolerance/hot swaps; management functions;
SNMP; logging functions; command line interface parsing:
interacting with the Network Management System such as
that disclosed in co-pending U.S. patent application Ser. No.
09/900,482, filed Jul. 6, 2001 by Elango Gannesan, Taqi
Hasan, Allen B. Rochkind and Sagar Golla, entitled NET-
WORK MANAGEMENT SYSTEM and U.S. patent appli-
cation Ser. No. 10/190.036, filed Jul. 5, 2002 by Taqi Hasan
and Elango Gannesan, entitled INTEGRATED RULE NET-
WORK MANAGEMENT SYSTEM, which applications are
hereby fully incorporated by reference into the instant appli-
cation; layer 2 and layer 3 routing functions; ICMP genera-
tion and handling; OSPF processes; and IKE/PKI processes.
As noted above, the Control Authority supports IKE/PKI,
OSPF routing, fault tolerance and management processes on
one or more NETBSD compute elements or CPUs.

Traffic to and from the Control Authority may take several
forms: local port traffic to the Control Authority, traffic from
the Control Authority to the local port, aggregator-to-aggre-
gator traffic, or control traffic passing through the crossbar
switch. Local to Control Authority traffic may comprise out-
of-band management traffic which is assumed to be secure.
This is the same for Control Authority traffic moving to the
local port. Control traffic from inside the device may take
several forms, including event logs and SNMP updates, sys-
tem status and system control message, in-band management
traffic, IKE/PKI traffic and OSPF traffic.

At boot, each compute element may perform a series of
tasks including initialization of memory, load translation look
aside buffer (TLB), a micro-code load, a basic crossbar
switch configuration, a load of the NetBSD system on the
Control Authority processor and finally a load of the packet
processing code to each of the compute elements. The Con-
trol Authority processor NetBSD implementation may boot
from a non-volatile memory source, such as a flash memory
associated with the particular compute element designated as
the Control Authority, or may boot via TFTP from a network
source. The Control Authority can then control loading of the
software configuration to each compute element by, in one
embodiment, loading an image of the software specified for
that element from the flash memory or by network (TFTP)
load. In each of the image loads, one or more of the elements
shown in FIG. 5 may be installed in the compute element.
Each compute element will use the operating system 305, but
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subsets of higher layers (320, 330, 360) or all of said modules,
may be used on the compute elements.

The operating system 305 is the foundation layer of system
services provided in the above layers. The operating system
305 provides low-level support routines that higher layers
rely on, such as shared memory support 310, semaphore
support 312 and timer support 314. These support routines are
illustrated in FIG. 5. In addition, a CPU ID manager 316 is
provided to allow for individual CPU identification.

The operating components shown in FIG. 5 are run on each
of' the service processing compute elements, which are those
compute elements other than the one or more compute ele-
ments which comprise the Control Authority. In certain
implementations, compute elements have a shared memory
resource for CPUs in the compute element. For the shared
memory function, one CPU needs to initialize the memory in
all systems before all processors can start reading a shared
memory region. In general, the initialization sequence is
required by one of the processors with access to the shared
memory region, but the initialization processor is not in a
control relationship with respect to any other processor. The
initialization processor maps the shared memory to agreed-
upon data structures and data sizes. The data structures and
semaphore locks are initialized and a completion signal is
sent to the processors.

In general, each CPU can issue a series of shared memory
allocation calls for an area of the shared memory region
mapped to application data structures. After the call, the
application accesses the data structures through application-
specific pointers. The sequence of calls to the shared memory
allocation is the same in all processors and for all processes,
since the processors are all allocating from the same globally
shared memory pool. Each processor other than the master
processor must perform a slave initialization process where it
initializes the data sizes and structures of the master and waits
for the completion signal from the master CPU.

The semaphore library 312 implements Portable Operating
System Interface (POSIX) semantics. A semaphore library is
provided and a memory based semaphore type is also pro-
vided to enable data locking in the shared memory. Wait and
post calls are provided for waiting for lock to be free, and
releasing the lock on a particular memory location. The ini-
tialization will generally set the memory location to a free
state (1). The wait loop will loop until the lock is free and set
the lock value to locked (0) to acquire the lock. The post call
releases the lock for the next available call. Additional POSIX
interfaces are also implemented to provide a uniform inter-
face for dealing with each of the compute elements.

The timer support module 314 implements two abstract
data types: a timer handler, which is a callback function for
timer expiration and takes a single void parameter with no
return value; and a timestamp function, which is an object
used short time information. The functions exported by the
timer module are: timer_add, which allows the controller to
add a timer callback given a time, handler, and generic param-
eters; a timer_timestamp which returns the current times-
tamp; a timer_timeout which checks for timeouts given the
timestamp and timeout value; and the timer_tostring which is
a debug return printable string for the timestamp.

The CPU identification module 316 provides for unique
CPU identification. There are three exported functions
including an initialization module, an obtained ID module,
and a get ID module. The obtain IDE module allows a system
chance to obtain the unique CPU you IDE in a Linux-like
manner. The CPU ID function allows the return of the CPU ID
for the CPU.
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Returning to FIG. 5, the next level of the software archi-
tecture of the present invention implements an IP stack 320.
The IP stack 320 provides functionality is that are normally
found in the networking portion of the operating system area.
In addition, it provides various TCP/IP services. The stack of
the present invention is optimized for performance. An
important feature of the IP stack of the present invention is
that it is distributed. Multiple processors with a shared
memory share the processing of IP packets in the stack.

In the IP stack, the Ethernet driver 322 is responsible for
interfacing with the hardware functions such as receiving
packets, sending packets, and other Ethernet functions such
as auto negotiation. Is also responsible for handling buffer
management as needed by the hardware.

The buffer management module 324 acts as interface
between Ethernet driver and the balance of the system. The
buffer manager performs and handles how buffers are dis-
patched and collected.

The IP fragmentation module 326 is responsible for iden-
tifying a fragmented IP packets and collecting them into a
linked list of frames. A routing table management module 325
is responsible for maintaining forwarding tables used by IP
forwarding and routing. It is responsible for interacting with
the routing module on the Control Authority compute ele-
ment. A TCP packet sequencer 328 is provided to collect and
send out packets in an original ordering and is utilized when
a subscriber requires packets to be read in order. This
sequencer is used as an optional processing step that can be
disabled and suffer no performance loss.

Other modules, which are provided in the IP stack, include
timeout support, ARP support, echo relay support, a MAC
driver and debug support.

Returning again to FIG. 5, the next level in the architecture
is the service architecture 330. The service architecture 330
provides support for the flow control and conversation based
identification of packets described below. The service archi-
tecture 330 is a flow-based architecture that is suitable for
implementing content services such as firewall, NAT band-
width management, and IP forwarding.

The service architecture is a distributed system, using mul-
tiple microprocessors with shared memory for inter-proces-
sor communications and synchronization. The system uses
the concept of a “flow” to define a series of packets, with
multiple flows defining a “conversation.”

A flow is defined as all packets having a common: source
address, source port, destination address, destination port,
subscriber 1D, and protocol. As packets travel through the
content service aggregator, each packet is identified as
belonging to a flow. (As discussed below, this is the task of the
Control Authority and input/output compute elements). The
flows are entered into flow tables which are distributed to each
of the compute elements so that further packets in the same
flow of can be identified and suitable action on the packet
applied in rapid fashion. It should be noted that the sub-
scriberID is not necessarily used within the processing pipes.
If the traffic is local to remote traffic, a VLAN tag is used
along with the subscriber ID. If the traffic is remote to local,
a forwarding table lookup is performed.

The use of the flow tables allows for packet processing to
be rapidly directed to appropriate processors performing
application specific processing. Nevertheless, initially, the
route of the packets through the processing pipelines must be
determined. As shown in FIG. 6a, packets and flows can
follow a “slow” or “fast” path through the processors. The
identification process defines a “slow path” for the packet,
wherein the processing sequence for the flow must be set up
as well as the specific requirements for each process. This
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includes performing a policy review based on the particular
subscriber to whom the flow belongs, and setting up the flow
to access the particular service or series of services defined for
that subscriber. A “fast path” is established once the flow is
identified and additional packets in the flow are routed to the
service processors immediately upon identification for pro-
cessing by the compute elements.

This slow path versus a fast path distinction is found in
many of the applied services. For example, in the case of
routing, the first packet of a flow may incur additional pro-
cessing in order to allow the system to look up the appropriate
next hop and output interface information. Subsequent pack-
ets in the flow are quickly identified and forwarded to see next
hop and output interface non-performing routing information
look-ups again. Similar “slow” and “fast” path models are
applied in the provision of other services.

Flows are organized into a conversation model. In a con-
versation, two parties are supported: an initiator and a respon-
dent. Each conversation is a model of a user session, with a
half-conversation corresponding to an initiator or a
responder. Each half conversation has a control channel and
data channel, so that there are four total flows in, for example,
an FTP session, a for an responder door control channel’s and
an initiate for and responder gator channels.

Returning to FIG. 64, the slow path/fast path distinction in
the present system is illustrated. When the first packet of a
new conversation enters the system via the input queue 600,
the flow lookup 602 will fail and a slow path process is taken
where new conversation processing 612 is performed. The
new conversation processing involves rule matching 612
based on a policy configuration 610 on the applicable policy.
If a particular conversation is allowed, then a conversation
object is created and state memory is allocated for the con-
versation. The flow objects are created and entered into the
flow table 616. If the rule match determines that the conver-
sation is not part of a flow which can be processed by the
service compute elements, the packets require further pro-
cessing which is performed on one of the processors of the
Control Authority 618, such as IKE. This processing is imple-
mented by consulting with the policy configuration 610 for
the subscriber owning the packet. An exemplary set of flow
tables is represented in FIG. 65. In FIG. 64, two tables are
shown: rhasttbl and lhastbl. rahstbl includes remote object
flow identification information, such as the remote address,
remote port, protocol, subscriber and VPN identification. The
local hash table contains internal flow data and subscriber
specific information, such as the local address, local port,
protocol, flag, subscriber VPN identification, and a handle
(whose usage is described below).

When additional packets in the flow arrive, the flow table
lookup will succeed and the fast path will be taken directly to
the service action processor or processing pipeline, allowing
the service to be applied with much greater speed. In some
cases, a conversation manager is consulted. Following appli-
cation that a particular service, the packet exits at the system
via an output queue.

Returning again to the service architecture of FIG. 5, an
additional module shown in the service architecture is the
conversation handler 322. The conversation handler 332 is
responsible for creating, maintaining, operating, and destroy-
ing conversation and half conversation objects.

The flow module 334 is responsible for flow objects which
are added and deleted from the flow table.

The rules policy management module 336 allows policies
for a particular subscriber to be implemented on particular
flows and has two interfaces: one for policy configuration and
one for conversation creation. The policy configuration mod-
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ule 336 matches network policy rules for a particular sub-
scriber to application processing in the content services level
of the architecture. The conversation creation module con-
sults the policy database and performs rule matching on
newly arrived packets. In essence, when a packet arrives, if it
takes the slow path, the packet must the clear aid to determine
which subscriber to packet belongs to any policies in place for
that subscriber in order to ford the packet through the correct
processing pipeline for that particular subscriber.

The service state memory manager 336 allows any service
in the service architecture to attach an arbitrary service-spe-
cific state, were data for the state is managed by the state
module. Thus, the allocated state objects can be attached on a
per flow basis, per half conversation basis, or per conversation
basis. States that are outside the conversation such as, for
example, RPC port mappings, are dealt with separately.

The application data parser 340 provides a common appli-
cation data parsing routine. One example is a Telnet protocol.

Finally, a TCP data reconstruction module 344 ensures that
data seen that by the IP content services are exactly the same
data seen by final destination servers. An anti-replay defense
may be implemented using this module as well.

At the top of the architecture stack shown in FIG. 5 are the
IP content services modules 360.

Inthe version of NetBSD running on the Control Authority,
the Ethernet driver has been changed to match a simple Mac
interface, where it gets and puts packets from a pre-assigned
block of memory. Hence IP addresses are assigned to these
NetBSD CPUs and the programs are run as if they are mul-
tiple machines. Inter NetBSD CPU communication is done
by using loopback addresses 127.0.0.*. IKE/PKI and the
management CPU has the real IP addresses bound to their
interfaces.

The MAC layer is aware of the IP addresses owned by the
NetBSD CPUS and shuttles packets back and forth.

Each management CPU runs its components as pthreads
(Single Unix Specification Threads). In the embodiment
shown in FIG. 4, the CPUs communicate with the compute
element CPUs through UDP sockets; this is done so that the
processes/threads on the NetBSD CPUs can block and not
waste CPU cycles.

The security of subscriber traffic is maintained by using
VLAN tagging. Each subscriber is assigned a unique VLAN
tag and the traffic from the subscribers is separated out using
this VLAN tag. In one embodiment, the content services
aggregation device is assumed to be in place between the
physical WAN switch and a layer 2 switch coupled between
the device and the data center. The VL AN table reflects tags at
the downstream Layer 2 switch and is configured at the aggre-
gator by the operator.

Operation of the Control Authority on the different types of
traffic is illustrated in FIG. 8.

As a new packet enters the Control Authority 100a, at step
810, the Control Authority determines type of traffic it is and
routes it to one of a number of function handlers accordingly.
If the traffic is SNMP traffic, an affirmative result is seen at
step 812 and the traffic is forwarded to an SNMP handler at
814. If the management traffic Command Line Interface traf-
fic at step 816, the traffic is forwarded to a CLI handler at 818.

If the traffic is from the Network Management System
server at step 815, the traffic is forwarded to a Log Server
handler at 817. If the traffic is change of state traffic from
outside of the content services aggregator at step 820, it is
routed to a failover handler 822. Likewise, if the aggregator is
sending change state traffic inside of the aggregator, at step
824 the result is affirmative, and it is forwarded to the failover
mode initialization handler at 826. In this sense, failover
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refers to a service applicable when multiple content services
aggregators are coupled together to allow performance redun-
dancy. They may be configured as master-slave or peer-to-
peer and upon failure of one of the devices, the failover
handler will coordinate one device taking over for another.

At step 828, a determination is made as to whether the
traffic is IKE/PKI traffic and if so, the traffic is forwarded to
the IKE/PKI module, discussed in further detail below. If the
traffic comprises routing instructions, as determined at step
836, the traffic is handled by the router module at 834. If the
traffic is control traffic, at step 836, the particular control
settings are applied 838. If the traffic is a layer 2 packet, it is
handled by a layer 2 handler at 842. And if the packet is an
ICMP packet, it is handled by an ICMP handler at 846.
Finally, if the packet is a trace route packet 848, it is for-
warded to a tracert (trace route) handler at 849. If it cannot be
determined what type of packet type is present, an error is
generated and the packet dropped. It should be understood
that the ordering of the steps listed in FIG. 8 is not indicative
of'the order in which the determination of the packets is made,
or that other types of functional determinations on the packet
are not made as packets enter the Control Authority.

C. Processing Pipelines

As noted above, the system supports a plurality of appli-
cation service modules. Those shown in FIG. 5 include Fire-
wall, NAT, IP forwarding (OSPF, static and RIP Routing),
Bandwidth Management, SSL, Encryption/Decryption, Web
Switching, Web Caching and IPSEC VPN.

In an implementation of the architecture of the present
invention wherein the compute elements and cross-bar switch
are respectively multi-processor unit 2010 and cross-bar
switch 3010 or 3110 described below, IP packets with addi-
tional data attached to them may be sent within the system.
This ability is used in creating a pipeline of compute ele-
ments, shown in FIGS. 7a and 75.

In one embodiment, the processing pipelines are dynamic.
That is, any compute element can transfer a processed packet
to any other compute element via the crossbar switch. In a
fully dynamic embodiment, each compute element which is
not part of the control authority can perform any of the ser-
vices provided by the system and has a full software load (as
described briefly above). In an alternative embodiment, the
process pipelines are static, and the flow follows an ordering
of the compute elements arranged in a pipeline as shown in
FIG. 7a in order to efficiently process the services. In this
static pipeline, functional application service modules are
assigned to specific compute elements, and specific proces-
sors within the compute elements may be optimized for com-
putations associated with providing a particular service. As
such, the software load for each compute element is con-
trolled by the Control Authority at boot as described above.
Nevertheless, the pipelines shown in FIG. 7a are only one
form of processing pipeline and the hardware representation
therein is not intended to be exclusive or limiting on the scope
of the present invention. It should be recognized that this
ordering is exemplary and any number of variations of static
pipelines are configurable. As illustrated in FIG. 4, the pro-
cessing pipeline shown in FIG. 7a and the flow pipeline
shown in FIG. 76 may be provided on physical cards which
may be used as part of a larger system.

As noted briefly above, once a new packet flow enters the
input queue and is fed to an input compute element 1005,
100c¢, a policy matching process performs a rule-matching
walk on a per subscriber basis to determine which services are
to be applied to the flow. In one embodiment, the flow is then
provided to a processor pipeline with specific compute ele-
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ments designated as performing individual content services
applications in cooperation with the Control Authority.

FIGS. 7a and 7b illustrate generally the mapping of the
particular application module to particular process element,
thereby forming a process pipeline. As shown in FIG. 75, two
compute elements 10056 and 100¢ perform flow stage opera-
tions allowing the system to classify flow and conversation
packets. Processor 100a represents the Control Authority
NetBSD compute engine. FIG. 7a shows the application
modules operating on individual processors. In one embodi-
ment, each compute element may be optimized for imple-
menting one of the content services applications. In an alter-
native embodiment, a dynamic pipeline may be created
wherein the compute elements can perform one or more dif-
ferent network services applications, and each element used
as needed to perform the individual services. In FIG. 7a,
processor 1004 is optimized to cooperate with the Control
Authority to perform IPSec utilizing the IPSec module. This
includes performing security association database (SADB)
lookups, IPSec encapsulation, bandwidth management, QoS,
and forwarding. Compute element 100/ is optimized for Fire-
wall and NAT processing as well as QoS and Webswitching.
Likewise, processors 100f, 100g and 100e are utilized for
Web switching, Web caching, and SSL optimized computa-
tions. In some cases, elements 1004 and 100/, are referred to
herein as “edge” compute elements, as they handle operations
which occur at the logical beginning and end of the process-
ing pipeline.

Each of the application services modules cooperates with
the Control Authority 380 in the provision of application
services. For each service application, this cooperation is
different. For example, in IPSec processing, Security Policy
Database (SPD) information is stored in the flow stage, wile
IKE and PKI information is kept in the Control Authority, and
statistics on IPSec and the security association database is
maintained in the IPSec stage. In providing the firewall ser-
vice, IP level check info is maintained in the flow stage, level
4-7 check info is maintained in the firewall module, and time
based expiration is maintained in the Control Authority.

In this embodiment, for example, in order to contain the
IPSec sequence number related calculations to the shared
memory based communication, a single IPSec security asso-
ciation will be mapped to a single Operating System 305
compute element. In addition, in order to restrict the commu-
nications needed between the various flows of a “conversa-
tion”, a conversation will be mapped to a single processing
element. In essence, this means that a given IPSec communi-
cation will be handled by a single processing pipe.

D. Flow Stage Module

FIG. 75 illustrates the flow stage module as operating on
two compute elements 1005 and 100c. FIG. 9 illustrates the
process flow within the flow stage. The flow stage module is
responsible for identifying new flows, identifying the set of
services that needs to be offered to the flow and dynamically
load balancing the flow (to balance throughput, memory
usage and compute usage) to a pipeline of compute elements.
In doing so, the flow stage also honors the requirements laid
out by the above items. Flow stage also stores this information
in a flow hash table, for subsequent packets in a flow to use.

As new flows are identified, if a new flow requires other
support data structures in the allocated compute elements,
appropriate functions are called to set up the data structures
needed by the compute elements. An example of a data struc-
ture for the IPSec security authority process is described
below with respect to FIGS. 13-14.

In general, and as described in particular with respect to
FIG. 9, for every packet in a flow, the flow hash table is read,
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a “route-tag” that helps to route a packet via the required
compute elements internally to the content service aggregator
is added, and the packet is forwarded on for processing.

Certain conventions in the routing are maintained. In gen-
eral, new flows are routed to processing pipelines such that
the traffic through the content service aggregator is uniformly
distributed across the available processing pipelines. Flows
are distributed to processing pipelines such that the flows
belonging to the same security association are sent to the
same processing pipeline. New flows are allocated such thata
“conversation” (flows, reverse flows and related flows) is sent
to the same processing pipeline. In addition, the flow stage
checks the SPD policies on new flows and trigger IKE if an
IKE-SA/IPSec-SA is not already established.

To bind conversations and a given IPSec security associa-
tion to single compute elements, the flow stage employs vari-
ous techniques. In one case, the stage can statically allocate
subscribers to processing pipelines based on minimum and
maximum bandwidth demands. (For example, all flows must
satisfy some processing pipeline minimum and minimize
variation on the sum of maximums across various processing
pipelines). In an alternative mode, if a subscriber is restricted
to a processing pipeline, new flows are allocated to the single
pipe where the subscriber is mapped. Also, the route-tag is
computed in the flow stage based on policies. The processing
can later modify the route-tag, if needed.

The flow routing process is illustrated in FIG. 9. As each
packet enters the system at step 902, the system determines
the type of the packet it is and routes it accordingly. At step
904, ifthe packet is determined to be a data packet from inside
the content services aggregator, the system understands that
the packet is intended to flow through the system at step 906,
and the compute elements 1005, 100¢ are set to a flowthrough
mode. If the packet is not from inside the aggregator at 904,
then at step 908 if the system determines that the packet is
local traffic from outside of the content services aggregator,
the flow table is checked at step 910 and if a match is found at
step 912, the destination is retrieved at step 914. If the security
association database contains information on the flow at step
916, then at step 918, the packet is forwarded to its destination
via the crossbar switch with its security association database
index, route tag and crossbar header attached. If the security
association database information is not present at step 916,
and the packet is forwarded to its destination with only its
route tag and the crossbar header at 920.

If no match is found at the checking the hash flow table at
step 912, then a policy walk is performed wherein the identity
of'the subscriber and the services to be offered are matched at
step 944. If a subscriber is not allocated to multiple pipes, at
step 946, each pipe is “queried” at step 950 (using the multi-
cast support in the cross-bar switch) to determine which pipe
has ownership of the conversation. If one of the pipelines does
own the conversation, the pipeline that owns this conversation
returns the ownership info at 950 and service specific set-up is
initiated at 948. The service specific setup is also initiated if
the flow is found to be submapped as determined by step 946.
It no pipe owns the flow at step 950, that the flow is scheduled
for a pipe at 952. Following service specific setup at 948, a
database entry to the fast path processing is added at 953 and
at step 954, route tag is added and the packet forwarded.

If the packet is not local at 908, it may be remote traffic
from outside of the content services aggregator as determined
atstep 930, the flow table is checked at step 932 and if a match
is found, at step 934, it is forwarded to its destination at step
936. If it is remote traffic from outside the box and a match is
not found at step 934, the packet is mapped to its destination
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at step 938 and an entry is created in the flow table before
forwarding the packet to its destination.

If the packet is a control packet from within the content
services aggregator at step 940, the packet is one of several
types of control packets and may be included those shown in
process 956. These types of control packets may include a
flow destroy packet, indicating that a particular flow is to be
destroyed. A flow create packet indicating that the particular
flow is to be created in the flow table. Other types of control
packets include a flow validate packet, database update pack-
ets, debug support packets, or load measuring packets.

E. QOS (Quality of Service)

QOS is performed by both the IPSec Modules and the
Firewall Modules at the flow stage.

In the system of the present invention, bandwidth alloca-
tion is performed on a per-subscriber basis. In general, the
goal of QOS is to provide bandwidth allocation on a per-
system rather than per-interface basis. The minimum guaran-
teed and maximum allowed bandwidth usage is configurable
on a per-subscriber basis. The QOS architecture provides that
where an internal contention for a resource makes it impos-
sible to meet the minimum bandwidth requirements for all
subscribers, performance should degrade in a manner that is
“fair” to all subscribers, and where the system is under-uti-
lized, the extra available bandwidth should be allocated in a
manner that is “fair” to all subscribers with active traffic.

The traditional approach to QOS uses an architecture
known as Classify, Queue, and Schedule (CQS). When a
packet arrives in the system, it is first classified to determine
to which traffic class it belongs. Once this classification has
been made, the packet is placed in a queue along with other
packets of the same class. Finally, the scheduler chooses
packets for transmission from the queues in such a way that
the relative bandwidth allocation among the queues is main-
tained. If packets for a given class arrive faster than they can
be drained from the queue (i.e. the class is consuming more
bandwidth than has been allocated for it) the queue depth will
increase and the senders of that traffic class must be informed
to lower their transmission rates before the queue completely
overflows. Thus, in the CQS architecture, bandwidth control
is shared between two loosely-coupled algorithms: the sched-
uling algorithm maintains the proper division of outgoing
bandwidth among the traffic classes and the selective-drop
algorithm (a.k.a. the admission control algorithm) controls
the incoming bandwidths of the traffic classes.

This traditional architecture does not function well in the
multiprocessor system of the present invention. In order to
implement a fair scheduling algorithm one would have to
monitor (n-s-c) queues, where n is the number of processors,
s is the number of subscribers and c is the number of classi-
fications per subscriber. Further, each compute CPU’s queues
cannot be dealt with in isolation since the per-class-per-sub-
scriber bandwidth guarantees are for the entire compute ele-
ment, not for the individual CPUs.

The QOS architecture of the present invention determines
a set of distributed target bandwidths for each traffic class.
This allows the content aggregator to provide bandwidth
guarantees for the system as a whole. These targets are then
used onalocal basis by each flow compute element to enforce
global QOS requirements over a period of time. After that
period has elapsed, a new set of target bandwidths are calcu-
lated in order to accommodate the changes in traffic behavior
that have occurred while the previous set of targets were in
place. For each traffic class, a single target bandwidth must be
chosen that: provides that class with its minimum guaranteed
bandwidth (or a “fair” portion, in the case of contention for
internal resources); does not allow that class to exceed its
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maximum allowed bandwidth; and awards a “fair” portion of
any extra available bandwidth to that class.

For purposes of the following disclosure, the term “time
quantum” (or “quantum”) refers to the amount of time that
elapses between each synchronization of the admission con-
trol state; the term Min, refers to the minimum bandwidth
guaranteed to subscriber i; the term Max, refers to the maxi-
mum bandwidth allowed to subscriber i; the term B, refers to
the total bandwidth used by subscriber i during the most
recently completed time quantum; the term Avg, refers to the
running average of the bandwidth used by subscriber i over
multiple time quanta; and the term Total, ; refers to the total
bandwidth sent from flow Compute element i to P-Blade edge
Compute element j during the most recently completed time
quantum.

Two additional assumptions are made: the change in Avg,
between two consecutive time quanta is small compared to
Min, and Max,; and the time required to send a control mes-
sage from a processing pipeline edge compute element to all
flow compute elements is very small compared to the round
trip time of packets that are being handled by the system as a
whole.

Identifying and correcting is the top priority to determine
the set of target bandwidths for the next quantum, multiple
congestion areas in which a resource may become oversub-
scribed and unable to deal with all of its assigned traffic are
identified.

There are three potential points of resource contention in
the system of the present invention: the outbound ports from
the flow stage processing pipeline crossbar switch to the
service provision processing pipeline compute elements; the
inbound port to the service processing pipeline crossbar
switch from the edge compute elements (or the computational
resources of the edge compute elements themselves); and the
outbound ports from the flow stage crossbar switch to the
outgoing system interfaces. The first two areas of contention
(hereafter known as inbound contention) are managed by the
flow compute elements 1005, 100c while outbound interface
contention is resolved by the service processing pipeline edge
compute elements 1004, 100%. The following description
follows the general case of inbound contention. It will be
understood by one of average skill that the methods used there
can be easily applied to outbound contention.

After the flow compute elements have exchanged statistics
for the more recently completed time quantum, the overall
bandwidth from each flow compute element to each edge
compute element, Total, ;, is computed. Resource contention
exists for edge compute element j if any of the following
constraints are not met:

Totaly,; + Total ; < 1 Gbitlsec

Totaly,; + Total ; < 1 Gbitlsec

4
Z Total; j < 1 Gbitlsec
i=1

Note that this method of contention detection is strictly for
the purposes of identifying and correcting contention after it
has occurred during a time quantum. Another method is
required for detecting and reacting to instantaneous resource
contention as it occurs and is described below.

As noted above, one goal of the QOS architecture is that, in
the presence of resource contention, the minimum guaranteed
bandwidths for each subscriber contending for the resource
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should be reduced in a manner that is fair to all contending
subscribers. More specifically, the allocation of the available
bandwidth for a contended resource will be considered fair if
the ratio of Avg; to Min, is roughly the same for each sub-
scriber contending for that resource:

. L Avg; Avg;
Fair < V i, j € {Contenders} : Vin ~ Min
i /)

Once contention for a resource has been detected, the con-
tenders’ bandwidth usage for the next quantum is scaled back
to alleviate the contention and maintain a fair allocation of
bandwidth among the contenders. In the case of a single
contended resource with a bandwidth deficit of D, a fair
allocation is obtained by determining a penalty factor, P,, for
each subscriber that is then used to determine how much of D
is reclaimed from that subscriber’s bandwidth allocation. P,
can be calculated by solving the system of linear equations:

Avg, - P D
Min, o

B, -P,D

Min,,

i=1

The above equations yield ideal values for the set of penalty
factors in the case of a single contended resource. In the case
of'm contended resources, a nearly ideal set of penalty factors
can be found by solving the system of linear equations:

Avgl - Pl,lDl — .= Pl,mDm
Mim -

Zn: P = 1
i=1

_ Avgn - Pn,lDl — .= Pn,mDm
T Min,,

Solving systems of linear equations is a well-studied prob-
lem and the best algorithms have a time complexity of O(n®)
where n is the number of variables. Given that n could be well
over 1000, in order to make the system practical for imple-
mentation in the present invention, the following algorithm
can be used to find approximate values for the penalty factors.
The intuition behind the algorithm is that the systems of linear
equations shown are being used to minimize, for all contend-
ers, the quantity:

3 Avg; —P;D— ...~ P uDy
Min;
Avg; —=PD— ... = P Dy, =1
abuse; = N - ~
j

The algorithm divides D into s smaller units and penalizes
by D/s the subscriber with the highest calculated abuse value
during each of s iterations. Since it takes O(n) operations to
determine the subscriber to penalize for each iteration, the
time complexity of this algorithm is O(sn), or simply O(n) ifs
is fixed. In practice, abuse will not actually be calculated;
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identifying the subscriber with the highest ratio of penalized
average bandwidth to minimum bandwidth is equivalent.

Unfortunately, not all traffic-shaping decisions may be
postponed until the next time quantum. In the case of resource
contention, it is possible for the packet buffers in the flow and
edge compute elements to overflow from the cache in a time
period that is much smaller than a full time quantum. In the
case of inbound contention, there can be up to 1 Gbit/sec of
excess data being sent to a contended resource. Assuming the
worst case of 64 byte packets and that 300 packets will fit in
an compute element’s cache (remember that all packets
require a minimum of one 512-byte block), an overflow con-
dition may occur in as quickly as:

300 packets- 64 bytes/packet- 8 bits/byte

~ 150 usec
1 Gbitlsec

This amount of time is about 40 times smaller than the
proposed time quantum so it will be necessary to detect and
handle this situation before the current time quantum has
expired.

The choice of time quantum has a direct impact on the
performance of the QOS architecture. Ifthe value is too small,
the system will be overloaded by the overhead of exchanging
state information and computing new target bandwidths; if
the value is too large, the architecture will not be able to react
quickly to changing traffic patterns.

As a starting point, the largest possible quantum that will
still prevent a traffic class with the minimum possible band-
width allocation from using more than its bandwidth quota
during a single quantum is used. Assuming that the 5 Mbits/
sec as the minimum possible bandwidth for a class and that
this minimum is to be averaged over a time period of 10
seconds, the choice of time quantum, q, is:

B S Mbitsisec-10 sec
B 8 Gbits/sec

=6.25 msec

This parameter may be empirically tuned to find the ideal
balance between responsiveness to changing traffic patterns
and use of system resources.

Since maintaining a true moving average of the bandwidth
used on a per-subscriber basis requires a good deal of storage
space for sample data, the Exponential Weighted Moving
Average (EWMA) is used.

The EWMA is calculated from a difference equation that
requires only the bandwidth usage from the most recent quan-
tum, v(t), and the previous average:

Avg(H)=(1-w)Avg,(t-=1)+wv()

where w is the scaling weight. The choice of w determines
how sensitive the average is to traffic bursts.

In general, in implementing the aforementioned QOS
architecture, the system includes a flow stage QOS module,
an IPSec stage outbound QOS module, an IPSec stage
inbound QOS module, a firewall stage outbound QOS mod-
ule, and a firewall stage inbound QOS module.

The flow stage QOS module is responsible for keeping
statistics on the bandwidth consumed by subscribers that it
sees. Time is divided into quantum and at the end of each
quantum (indicated through a control message from the Con-
trol Authority), statistics are shared with the other flow stages,
including the split of the bandwidth by service processing
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pipelines. This enables each flow stage to have an exact view
of'the bandwidth consumed by different customers/priorities.
Bandwidth maximum limits and contention avoidance are
enforced by calculating drop probability and applying it on
packets that pass therethrough.

In implementation, the flow stage QOS module will use a
number of variables (where each variable has the form “vari-
able [id1] [id2] . . . [id(»)]” and such variables may include:
bytes_sent[cpu][subscriber][color][p-ipe], number_of_
flows[subscriber]|[color][p-pipe], drop_probability[sub-
scriber][color][p-pipe], and bytes_dropped[cpu][subscriber]
[color][p-pipe] where the id “color” refers to the packet pri-
ority.

When time quantum messages are received from the Con-
trol Authority, the CPU will sum up the statistics and send to
the CA and other CPUs to generate (bytes_seen|subscriber]
[color][p-pipe]). The CLI cpu will also send messages to the
compute-CPUs to reset their counters. The flow stage module
will also calculate the bandwidth usage in the last quantum
and determine whether any maximums are exceeded. If so, it
will calculate the drop probability in shared memory. Com-
pute CPUs use it as soon as it is available. Next, the flow stage
will calculate cumulative bytes_sent[p-pipe], if a processing
pipeline is over subscribed, it will calculate drop probability
drop_probability[subscriber]|[color][p-pipe] in  shared
memory. Compute elements in the service pipeline use this as
soon as it is available. The variable bytes_sent[p-pipe] is used
in assigning new tlows to processing pipelines. [f the process-
ing pipeline or the cross-bar switch sends a “back-off” mes-
sage, the flow stage QOS will compute a new drop probabil-
ity: drop_probability[subscriber][color][p-pipe] using a rule
of thumb that the TCP window will reduce the rate by 50% if
apacket is dropped. If there are many simultaneous flows, the
drop probability is higher and smaller if we have small num-
ber_of_flows currently active. The flow stage QOS will also
send alerts when maximum is exceeded, when min is not
satisfied due to internal contention, when packets are dropped
due to contention. Finally, this stage will keep track of packets
dropped and log it to control authority.

The QOS module present on the IPSec compute element of
the processor stage inbound and firewall stage inbound QOS
module send panic messages back to the Control Authority on
overload. A watermark is implemented to ensure that a burst
can be handled even after a panic message was sent.

The IPSec stage inbound QOS module and firewall stage
inbound QOS module implementations keep track of the
queue sizes in the compute CPUs. If a 80% watermark is
exceeded send a panic signal to the flow stages. In this stage,
there is no need to drop packets.

The IPSec stage outbound QOS module and firewall stage
outbound QOS module detect contention on an output inter-
face. The packets that come to this stage (in outbound direc-
tion) would be pre-colored with the priority and subscriber by
the flow stages. This stage needs to send the packets to the
correct queue based on the color. Due to the handling of QOS
at the input a backoff really indicates contention for an output
port, due to bad luck.

In implementation, the flow stage outbond QOS module
will use a number of variables (where each variable has the
form “variable [id1] [id2] . . . [id(#)]” and such variables may
include bytes_sent[cpu][subscriber][color|[interface]. Upon
receipt of time quantum messages from the control authority
CLI CPU will sum up the statistics and send to the CA and
other CPUs: bytes_sent[cpu][subscriber][color][interface].
The CLI cpu will also send messages to the compute-CPUs to
reset their counters. The flow stage outbound QOS will then
calculate cumulative bytes_sent[interface], if an interface is
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over subscribed, calculate drop probability: drop_probability
[subscriber] [color] [interface] in shared memory. This infor-
mation will then be provided to the processing pipeline com-
pute elements to use as soon as it is available. In alternative
embodiments, the “use bytes_sent[interface]” value can be
used in assigning new flows to interfaces on equal cost paths.
Upon receiving a back-off message from a p-pipe, compute
new drop probability: drop_probability[subscriber] [color]
[p-pipe] using a rule of thumb whereby the TCP window will
reduce the rate by 50% if a packet is dropped. If there are
many simultaneous flows, the drop probability is higher and
smaller if we have small number_of_flows currently active.
The flow stage QOS will also send alerts when packets are
dropped due to contention. Finally, this stage will keep track
of packets dropped and log it to control authority.

F. IPSec Stage Module

The IPSec stage module is responsible for encapsulating
local to remote IPSec traffic and de-capsulating remote-to-
local IPSec traffic. For remote-to-local traffic, if needed, the
module de-fragments the encapsulated IPSec packets before
de-capsulation. For local-to-remote traffic, if needed, the
module fragments a packet after encapsulated (if the packet
size exceeds the MTU). Before sending the packet to the
Firewall stage compute element, the module tags the packet
with the subscriber ID and a VPN IKE tunnel ID. Each sub-
scriber is entitled to implement firewall rules specific to that
subscriber. Once an IKE session is established, the security
associations are sent to this stage by the Control Authority.
This stage is responsible for timing out the security associa-
tion and starting the re-keying process. Control information
and policies are downloaded from the Control Authority. The
module also supports management information bases, log-
ging and communication with other compute elements.

In one implementation, the IPSec module operates as gen-
erally shown in FIG. 10. As each new packet enters the [PSec
module at 1010, a determination is made as to whether the
packet needs to be encapsulated at step 1016 or de-capsulated
at step 1012. If the packet is an encapsulation case, at step
1014, the system will extract the security parameter index
(SPI) and do an anti replay check. Basic firewall rules will be
applied based on the tunneling IP. The security association
(SA) will be retrieved from the security association database,
and the packet de-capsulated using the security association.
The internal header will be cross-checked with the security
association. The security association status will be updated
and renewal triggered if needed. Bandwidth management
rules may be applied before sending the packet on to the next
compute element processing stage with the crossbar header
attached.

If the packet requires encapsulation, at step 1016, the sys-
tem will first determine whether the packet is part of an
existing flow by checking the hash flow table at step 1018. If
a match is found, the system will use the handle value and at
step 1026, using the security association database index, the
system will retrieve the security association, encapsulate the
packet using the security association, update the security
association status and trigger a renewal if necessary. IP for-
warding information will be saved and the packet will be
forwarded on to the next stage. If a match is not found in the
hash table, an error will be generated at step 1024. Ifthe traffic
is control traffic is indicated at step 1030, it may comprise one
of several types of control traffic including security associa-
tion database update, faulttolerance data, system update data,
or debug support along the systems running the featured
mode, triggering a software consistency checked, a hard ware
self check, or a system reset at 1032.
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A more detailed description of the IPSec module is shown
and described with respect to FIGS. 12-15, and illustrates
more specifically how the Control Authority and the compute
elements work together to provide the service in a distributed
manner.

FIG. 12 is a block diagram illustrating how the flow stage
710, the IPSec processor stage 720 and the IKE stage 380-1
running in the Control Authority cooperate to distribute the
IPSec service. As shown in FIG. 12, the IKE stage of the
Control Authority includes an ISAKMP/Oakley key man-
ager, an [PSec policy manager, a multiplexor, certificate pro-
cessing tools, a cryptography library and a utility library. The
10/Flow stage 710, described above, performs the SPD look-
ups and provides the IKE interface, while the IPSec stage 720
provides a command line interface and is the controlling
processor for the operation.

Communication between the flow stage and the IPSec
stage 720 will include SPD entry commands, including cre-
ation and deletion of SPD entries, as well as flow entry con-
trol. Control messages for IKE and IPSec will pass between
the IKE stage 380-1 and the IPSec CPU 720. The IPSec stage
will retrieve all security association information from the IKE
stage 380-1. The flow stage 710 will provide the initial look-
ups and provide a handle for the packet, as described above
with respect to FIG. 10. Once the compute engine receives the
packet, the type of processing required is identified. The
possibilities include Encryption and HMAC generation,
decryption and validation and none. Note that various types of
IPSec processing can occur, including Encapsulating Secu-
rity Protocol (ESP) and Authentication Header (AH) process-
ing.

The data structure for the security association database is
illustrated in FIG. 15. As shown therein each security asso-
ciation includes a database pointer sadb-ptr to the security
association database. Each data entry contains selectors as
well as inbound and outbound IPSec bundles. Each IPSec
bundle contains information about IPSec size and security
association control blocks. Each control block contains infor-
mation about security keys, lifetime statistics and the replay
window.

The particular implementation of IPSec processing on the
compute engine (and by reference therein to the control stage
380-1) is shown in FIG. 13. As shown in FIG. 13, the compute
CPU fetches the next packet from its input queue. (This
operation will vary depending on the nature of the hardware
running the system of the present invention).

At step 1310, using the handle provided by the flow stage,
the CPU will find the security association for the packet and
preprocess the packet. Ifthe packet is a local to remote packet
(a packet destined for the Internet), as determined at step
1312, the CPU at step 1314 will shift the link headers, create
space for IPSec headers in the packet headers, build an ESP
header, set padding and set the next protocol field.

At this stage, the packet is ready for encryption. In a gen-
eral hardware implementation, the encryption algorithm pro-
ceeds using the encryption techniques specified in the RFCs
associated with IPSec and IKE and implemented using stan-
dard programming techniques on a conventional micropro-
cessor. In one particular implementation using the multipro-
cessing hardware discussed herein, the encryption technique
1350 is implemented using a compute element with an accel-
erator: steps 1316, 1318, 1320, 1322, 1326 and 1328 are
implemented if the software is operated on a compute element
in accordance with co-pending U.S. patent application Ser.
No. 09/900,481, filed Jul. 6, 2001 by Fred Gruner, David
Hass, Robert Hathaway, Ramesh Penwar, Ricardo Ramirez,
and Nazar Zaidi, entitled MULTI-PROCESSOR SYSTEM
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wherein the compute elements include an application specific
co-processor wherein certain service specific functions can
be accelerated in hardware, as defined in the co-pending
application.

In this implementation the acceleration function is called at
step 1316 and if the call is successful at 1318, the co-proces-
sor performs the encryption function and completes at step
1320. The status flag indicating the co-processor is busy will
be set at 1322, acheck will be made at 1326 to determine if the
maximum number of packets has been prefetched and if not
packets will be pre-fetched (step 1328) for continued process-
ing as long as the minimum number of packets has not been
reached (at step 1326). If the call for the accelerator function
fails, an error will be logged at 1324.

FIG. 14 shows the completion of the encapsulation func-
tion. Once the packet had been encapsulated, if no errors (at
step 1410) have occurred in the encapsulation accelerator, or
upon completion of the conventional encryption process, if
the packet is determined to be a local to remote packet at step
1414, then at step 1416, the cross bar header will be added, the
subscriber identifier will be determined from the security
association and saved in the crossbar header. The packet will
be fragmented as necessary and transmitted to the compute
element’s output queue.

If the packet is not a local to remote packet, then the cross
bar header will be built and the next stage packet will be
determined from the frame header. The next hop Mac address
will be filled from the hash table data structure and the packet
forwarded to the next compute element stage for processing.

Itshould be noted that each security association can consist
of multiple flows and all packets belonging to a security
association are generally directed to one compute element.
The security policy database is accessible to all compute
elements, allowing all compute elements to do lookups in the
database.

G. Firewall Stage Module

The firewall stage performs a number of functions. For
local to remote non-IPSec traffic the stage performs stateful
Firewall, forwarding and NAT. In addition, for local to remote
IPSec traffic, the stage performs basic egress firewall for
tunnel IP and forwarding for tunneling packets. For remote to
local traffic, the stage performs (de)NAT, Firewall, Forward-
ing, and bandwidth management.

This stage also receives forwarding table updates and
downloads policies from the Control Authority. Support for
MIBs, logs and communication to other compute elements
are also present in this stage.

FIG. 11 illustrates operation of the Firewall stage. As each
packet arrives at step 1110, a determination as to the source
and destination of the traffic is made and if the packet is local
to remote traffic, at steps 1112 and 1114, a second determi-
nation is made If the packet is local to remote traffic the route
tag is used to route the packet to the next available compute
element and Firewall, web switching and NAT rules are
applied. The packet is forwarded to other compute elements,
if needed, for additional service processing, and routed to the
crossbar switch with a route tag at 1116

Ifthe packet is remote to local traffic at step 1120, based on
the tunnel ID of the packet, NAT lookups and mappings are
applied (deNat), firewall, subscriber bandwidth (QOS) and
forwarding rules are applied and the packet is passed to the
next stage in flow through mode.

If the packet is control traffic indicating a policy update,
NAT, Firewall, or bandwidth rules are updated, or the for-
warding tables are updated at 1128.



US 9,083,628 B2

27

Finally, if the traffic is a control message at 1130, the
particular control instruction is run at 1132. If the packet is
none of the foregoing, a spurious trap is generated.

H. Routing

In a further aspect of the present invention, the architecture
provides a number of routing functions, both internally and
for routing between subscribers and the Internet (or other
public addresses). The system supports Open Shorted Path
First (OSPF) routing protocol.

FIG. 15a illustrates a general overview of the routing archi-
tecture of the content services aggregator of the present inven-
tion. As noted above, physical interface ports of the content
services aggregator are labeled as either trusted or untrusted.
The untrusted interfaces typically connect to a core or access
router used in the data center. The trusted interfaces are fur-
ther divided into sub-interfaces by the use 0f 801.1 Q VLAN
tags. These sub-interfaces provide the fanout into end-cus-
tomer equipment via layer 2 VLAN switches.

A virtual router handles routing for each subscriber. These
virtual routers send the public addresses present in the sub-
scriber’s router to the provider router. The subscriber router is
responsible for finding a path to the subscriber nodes. The
provider routers forward the traffic appropriately upstream to
the public addresses. The virtual router also routes traffic
from the Internet downstream to the appropriate subscriber.
Public addresses in the subscribers are learned at the provider
router by injecting the filtered subscriber routes from the
virtual router to the provider router.

The virtual private routed network (VPRN) setup from the
virtual router’s point of view is done through static routers.
IKE tunnels are defined first and these correspond to unnum-
bered point-to-point interfaces for the router. The sub-nets/
hosts reachable via such an interface is configured as static
routes.

Security of subscriber traffic is maintained by using VLAN
tagging. Each subscriber is assigned a unique VLLAN tag. The
traffic from the subscribers is separated out using this VLAN
tag. The tagging is actually done at the port of the downstream
L2 switch based on ports. The upstream traffic is tagged
according to the subscriber it is destined to and sent down-
stream to the .2 switch. The VL AN table reflects tags at the
downstream 1.2 switch and is configured at the aggregator by
the operator.

The router function is provided by a series of modules. To
implement OSPF virtual routers, provider router and steering
function, a Routing Information Base (RIB), Routing Table
Manager (RTM), External Table Manager (XTM), OSPF
stack, and Forwarding Table Manager (FTM). A virtualiza-
tion module and interface state handler are also provided. To
implement forwarding table distribution and integration to
other modules, a Forwarding Table Manager (FTM) includ-
ing a Subscriber Tree, Forwarding Tree, and Next hop block
are utilized. A VPN table configuration and routing module, a
VLAN configuration and handling module, MIBs and an
access function and debugging module are also provided.

The content services aggregator is capable of running a
plurality of virtual routers. In one embodiment, one virtual
router is designated to peer with the core routers 1510 through
the un-trusted interfaces 1515, providing transit traffic capa-
bilities. A separate virtual router VR1-VRan is also provided
for each of a number of secure content domains (SCD) and
covers a subset of the trusted sub-interfaces 1530. Each vir-
tual router is capable of supporting connected and static
routes, as well as dynamic routing through the OSPF routing
protocol.

Each virtual router can be thought of as a router at the edge
of'each SCD’s autonomous system (AS). As is well known in
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OSPF parlance, an AS is the largest entity within which the
OSPF protocol can operate within a hierarchy. Instead of
using boarder gateway protocol (BGP) to peer with other
virtual routers within the AS, the routing table of a virtual
router includes routes learned or configured from other vir-
tual routers. These routes may be announced to the routing
domain associated with a virtual router through redistribution
to the OSPF process.

The content services aggregator maintains a separate rout-
ing table for each virtual router in the system. Because every
virtual router peers with every other virtual router in the
system, a consistent routing view is maintained even across
SCDs.

The one exception to this is in the implementation of pri-
vate routes. Any route (connected, static or OSPF) that is
originated within a specific virtual router may be marked as
private. Private routes stay within the context of the originat-
ing virtual router and do not get reflected in the routing tables
of other virtual routers. This makes it possible for adminis-
trators to maintain separate addressing and routing contexts
for different SCDs.

In one embodiment, the a routing stack supports: dynamic
and static ARP entries; static route entries (with dynamic
resolution); routing and ARP table debugging; dynamic
reconfiguration; Out-of-band configuration and private route
selection. The OSPF Routing Protocol supports: RFC2328
OSPF Version 2; clear text and cryptographic authentication;
debugging output; dynamic reconfiguration through the CLI;
route redistribution selection using route-maps and access-
lists; and private route selection using route-maps and access-
lists.

The OSPF components of the routers run on the Control
Authority compute element and build up the XTM. The XTM
module is then used to build the RTM which contains the best
route across all routing protocols. The RTM module is then
used to build the forwarding table, that, in turn, add appropri-
ate routes.

The forwarding table is built in the Control Authority and
then distributed across to the compute elements on the pro-
cessing pipelines. The forwarding table contains the routes
learned via OSPF and static routes. The forwarding table is
used on the route lookups at the processing pipelines. The
forwarding table manager handles fast path forwarding,
equal-cost multi-path, and load balancing. L.oad balancing for
equal cost paths is achieved by rotating the path used for each
flow through the contending paths for the flow. The flow table
has pointers to the forwarding table for the routes that have
been looked up.

The VPN table consists of the IP addresses in the subscrib-
er’s VPN context. These addresses are sent on the IPSec
tunnel providing secure routing across Internet for the VPN
set up for the distributed VPN subnets. This I[PSec tunnel
consists of the end-to-end tunnels between the local and
remote gateways. The operator setting up the VPN configures
the SPD information.

Where two aggregators are used as a failover pair, a failover
module provides failure recovery between a pair of content
service aggregators. The master content aggregation device is
elected by aleader election protocol based first on priority and
secondly on IP address. The backup is the next best switch
based on these two parameters. In one embodiment, only one
backup is configured and used. Traffic from the subscribers is
associated with a virtual router which in turn is associated
with a single master/provider router living on a content ser-
vice device. On failure of the content service aggregator, the
backup takes up the functionality of the master. The master
alive sent out periodically by the elected master to the other
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content service in the replication configuration. Failure of the
master is detected by absence of a master alive signal or the
volunteer release of ownership as master by sending a priority
zero master alive to other content service aggregator. The
master alive is sent on all the ports on the replication master
switch. Also periodically, the OSPF virtual routers’ state
information, Firewall, NAT and VPN state information is sent
across the Failure link directly to the failure links of the other
content service aggregators(s). Only the master responds to
the packets destined for the subscribers it is currently man-
aging. On the failure of the master, the backup takes over as
the master.

The operator configures VLLAN table information by copy-
ing the tag mapping on the downstream 1.2 switch. The port
tagging is configured on the downstream switch. The VLAN
tag is stripped out at the virtual router before sending up the IP
stack. Incoming packets from upstream are sent to the public
destination address by the provider router. VPN addresses are
tunneled through the appropriate IPSec tunnel. The tunnel
information is used to figure out the correct subscriber and
thus its VL AN tag is read from the VLLAN table. This tag is
inserted in the Ethernet packet before sending out down-
stream.
1.SSL

In a manner similar to other services provided herein, the
SSL module cooperates with the flow stage and the Control
Authority to provide SSL encryption and decryption services.
In one embodiment, the SSL. method employed may be those
specified in co-pending U.S. patent application Ser. No.
09/900,515, filed Jul. 6, 2001 by Michael Freed, Elango Gan-
nesan and Praveen Patnala, entitled SECURE SOCKETS
LAYER PROTOCOL CUT THROUGH ARCHITECTURE
inventors Michael Freed and Elango Ganesen, and hereby
fully incorporated by reference herein.

In general, the flow stage will broadcast a send/request
query to determine which processing pipeline is able to
handle the SSL processing flow. The Control Authority
receiving the queues will verify load on all CPUs in the
compute elements and determine whether the SSL flows exist
for same IP pair, and then select a CPU to perform the SSL.
An entry in the flow table is then made and a response to the
Control Authority with a flow hint is made. The flow hint
contains information about the flow state, the corresponding
CPU’s ID and index to the SSL Certificate Base. Next, the
CPU calculates a hash value for the Virtual ID’s Certificate,
saves it into SSL Certificate Base and pre-fetches the Certifi-
cate’s hash entry.

The flow stage will then send the IP packet with hint
information in the crossbar switch header to the compute
engine. In one embodiment, this means sending the packet to
the compute element’s MAC which will extract the CPU_ID
from the hint. If the CPU_ID is not null, it will put the packet
in a particular CPU’s queue. If the CPU_ID does not exist, a
selection process to select an appropriate CPU may be imple-
mented.

In the implementation using multi-processor 2010, as
described below, for compute elements, each CPU will pass
through its CPU input queue to obtain a number of entries and
issue pre-fetches for packets. This will remove a packet entry
from the input queue and add it to a packet pre-fetch waiting
queue. As the CPU is going through packet pre-fetch waiting
queue, it will get the packet entry, verify the hint, issue pre-
fetch for the SSL Certificate Base (if it is a first SSL packet,
then calculate Cert Hash and issue pre-fetch for it), move it to
SSL Certificate Base waiting queue. Finally it will retrieve the
packet.
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The system must respond to the SSL. handshake sequence
before proceeding with description. The “threeway hand-
shake” is the procedure used to establish a TCP/IP connec-
tion. This procedure normally is initiated by one TCP device
(the client) and responded to by another TCP device (the
server). The procedure also works if two TCP simultaneously
initiate the procedure.

The simplest TCP/IP three-way handshake begins by the
client sending a SYN segment indicating that it will use
sequence numbers starting with some sequence number, for
example sequence number 100. Subsequently, the server
sends a SYN and an ACK, which acknowledges the SYN it
received from the client. Note that the acknowledgment field
indicates the server is now expecting to hear sequence 101,
acknowledging the SYN which occupied sequence 100. The
client responds with an empty segment containing an ACK
for the server’s SYN; the client may now send encrypted data.

In the system of the present invention, the flow stage will
send a SYN packet with Hint information in Mercury header
to SSL’s MAC CPU, which extract CPU ID from the hint and
if it not 0, then put packet to particular CPU’s queue. If
CPU_ID not exist (0) then MAC CPU use a round-robin type
process to select appropriate CPU.

In response the client Hello in the SSL sequence, the sys-
tem prepares to perform SSL. In the implementation of the
present invention, the CPU receives Client Hello and issues a
pre-tetch for the security certificate. In response to the Client
Hello, the system prepares the compute element for the SHA
calculation and the MD35 calculations. Next, an ACK will be
sent back to the server using the system architecture TCP.
Next, a Server Hello is prepared, and any necessary calcula-
tions made using the compute element dedicated to this task.
The Control Authority then prepares the server certificate
message and sets the compute element for the server certifi-
cate message. Finally a server hello done message is prepared
with the necessary calculations being made by the compute
element and the server hello done is sent.

Next, the clientkey exchange occurs and the RSA and SHA
calculations are performed by the compute element.

When the RSA exponentiation is finished, the handshake
hash calculation is performed using the compute element and
the master secret is decrypted. The pre-shared keys are
derived from the master secret and a finished message is
prepared. The packet can then be sent to the processing pipe-
line for SSL processing. Once the computations are finished,
the packed may be forwarded.

When the client is finished sending data, handshake calcu-
lations are preformed by the compute element and compared
by the Control Authority with the calculated hashes for veri-
fication. Alerts may be generated if they do not match.

It will be recognized that other services can be provided in
accordance with the present invention in a similar manner of
distributing the computational aspects of each service to a
compute element and the managerial aspects to a Control
Authority. In this manner, the number_of_flows can be scaled
by increasing the number of processing pipelines without
departing from the scope of the present invention. These
services include Web switching, QOS and bandwidth man-
agement.

In addition, it should be recognized that the system of the
present invention can be managed using the management
system defined in U.S. patent application Ser. No. 09/900,
482, filed Jul. 6, 2001 by Elango Gannesan, Taqi Hasan, Allen
B. Rochkind and Sagar Golla, entitled NETWORK MAN-
AGEMENT SYSTEM and U.S. patent application Ser. No.
10/190,036, filed Jul. 5, 2002 by Taqi Hasan and Elango
Gannesan, entitled INTEGRATED RULE NETWORK
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MANAGEMENT SYSTEM. In that system, a virtual man-
agement system for a data center, and includes a management
topology presenting devices, facilities, subscribers and ser-
vices as objects to an administrative interface; and a configu-
ration manager implementing changes to objects in the topol-
ogy responsive to configuration input from an administrator
via the administrative interface. A graphical user interface
designed to work in a platform independent environment may
be used to manage the system.
II. Multi-Processor Hardware Platform
A. Multi-Processing Unit

FIG. 16 illustrates a multi-processor unit (MPU) in accor-
dance with the present invention. In one embodiment, each
processing element 100 appearing in FIG. 4 above is MPU
2010. MPU 2010 includes processing clusters 2012, 2014,
2016, and 2018, which perform application processing for
MPU 2010. Each processing cluster 2012, 2014, 2016, and
2018 includes at least one compute engine (not shown)
coupled to a set of cache memory (not shown). The compute
engine processes applications, and the cache memory main-
tains data locally for use during those applications. MPU
2010 assigns applications to each processing cluster and
makes the necessary data available in the associated cache
memory.

MPU 2010 overcomes drawbacks of traditional multi-pro-
cessor systems. MPU 2010 assigns tasks to clusters based on
the applications they perform. This allows MPU 2010 to
utilize engines specifically designed to perform their assigned
tasks. MPU 2010 also reduces time consuming accesses to
main memory 2026 by passing cache data between clusters
2012,2014, 2016, and 2018. The local proximity of the data,
as well as the application specialization, expedites process-
ing.

Global snoop controller 2022 manages data sharing
between clusters 2012, 2014, 2016, and 2018 and main
memory 2026. Clusters 2012, 2014, 2016, and 2018 are each
coupled to provide memory requests to global snoop control-
ler 2022 via point-to-point connections. Global snoop con-
troller 2022 issues snoop instructions to clusters 2012, 2014,
2016, and 2018 on a snoop ring.

In one embodiment, as shown in FIG. 16, clusters 2012,
2014, 2016, and 2018 are coupled to global snoop controller
2022 via point-to-point connections 2013, 2015, 2017, and
2019, respectively. A snoop ring includes coupling segments
2021, _,, which will be collectively referred to as snoop ring
2021. Segment 2021, couples global snoop controller 2022 to
cluster 2018. Segment 2021, couples cluster 2018 to cluster
2012. Segment 2021, couples cluster 2012 to cluster 2014.
Segment 2021, couples cluster 2014 to cluster 2016. The
interaction between global snoop controller 2022 and clusters
2012,2014,2016, and 2018 will be described below in greater
detail.

Global snoop controller 2022 initiates accesses to main
memory 2026 through external bus logic (EBL) 2024, which
couples snoop controller 2022 and clusters 2012, 2014, 2016,
and 2018 to main memory 2026. EBL 2024 transfers data
between main memory 2026 and clusters 2012, 2014, 2016,
and 2018 at the direction of global snoop controller 2022.
EBL 2024 is coupled to receive memory transfer instructions
from global snoop controller 2022 over point-to-point link
2011.

EBL 2024 and processing clusters 2012, 2014, 2016, and
2018 exchange data with each other over a logical data ring.
In one embodiment of the invention, MPU 2010 implements
the data ring through a set of point-to-point connections. The
data ring is schematically represented in FIG. 16 as coupling
segments 2020, 5 and will be referred to as data ring 2020.
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Segment 2020, couples cluster 2018 to cluster 2012. Segment
2020, couples cluster 2012 to cluster 2014. Segment 2020,
couples cluster 2014 to cluster 2016. Segment 2020, couples
cluster 2016 to EBL 2024, and segment 20205 couples EBL
2024 to cluster 2018. Further details regarding the operation
of data ring 2020 and EBL 2024 appear below.

FIG. 17 illustrates a process employed by MPU 2010 to
transfer data and memory location ownership in one embodi-
ment of the present invention. For purposes of illustration,
FIG. 17 demonstrates the process with cluster 2012—the
same process is applicable to clusters 2014, 2016, and 2018.

Processing cluster 2012 determines whether a memory
location for an application operation is mapped into the cache
memory in cluster 2012 (step 2030). If cluster 2012 has the
location, then cluster 2012 performs the operation (step
2032). Otherwise, cluster 2012 issues a request for the nec-
essary memory location to global snoop controller 2022 (step
2034). In one embodiment, cluster 2012 issues the request via
point-to-point connection 2013. As part of the request, cluster
2012 forwards a request descriptor that instructs snoop con-
troller 2022 and aids in tracking a response to the request.

Global snoop controller 2022 responds to the memory
request by issuing a snoop request to clusters 2014, 2016, and
2018 (step 2036). The snoop request instructs each cluster to
transfer either ownership of the requested memory location or
the location’s content to cluster 2012. Clusters 2014, 2016,
and 2018 each respond to the snoop request by performing the
requested action or indicating it does not possess the
requested location (step 2037). In one embodiment, global
snoop controller 2022 issues the request via snoop ring 2021,
and clusters 2014, 2016, and 2018 perform requested owner-
ship and data transfers via snoop ring 2021. In addition to
responding on snoop ring 2021, clusters acknowledge servic-
ing the snoop request through their point-to-point links with
snoop controller 2022. Snoop request processing will be
explained in greater detail below.

If one of the snooped clusters possesses the requested
memory, the snooped cluster forwards the memory to cluster
2012 using data ring 2020 (step 2037). In one embodiment, no
data is transferred, but the requested memory location’s own-
ership is transferred to cluster 2012. Data and memory loca-
tion transfers between clusters will be explained in greater
detail below.

Global snoop controller 2022 analyzes the clusters’ snoop
responses to determine whether the snooped clusters owned
and transferred the desired memory (step 2038). If cluster
2012 obtained access to the requested memory location in
response to the snoop request, cluster 2012 performs the
application operations (step 2032). Otherwise, global snoop
controller 2022 instructs EBL 2024 to carry out an access to
main memory 2026 (step 2040). EBL 2024 transfers data
between cluster 2012 and main memory 2026 on data ring
2020. Cluster 2012 performs the application operation once
the main memory access is completed (step 2032).

B. Processing Cluster

In one embodiment of the present invention, a processing
cluster includes a single compute engine for performing
applications. In alternate embodiments, a processing cluster
employs multiple compute engines. A processing cluster in
one embodiment of the present invention also includes a set of
cache memory for expediting application processing.
Embodiments including these features are described below.
1. Processing Cluster—Single Compute Engine

FIG. 18 shows one embodiment of a processing cluster in
accordance with the present invention. For purposes of illus-
tration, FIG. 18 shows processing cluster 2012. In some
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embodiments of the present invention, the circuitry shown in
FIG. 18 is also employed in clusters 2014, 2016, and 2018.

Cluster 2012 includes compute engine 2050 coupled to
first tier data cache 2052, first tier instruction cache 2054,
second tier cache 2056, and memory management unit
(MMU) 2058. Both instruction cache 2054 and data cache
2052 are coupled to second tier cache 2056, which is coupled
to snoop controller 2022, snoop ring 2021, and data ring
2020. Compute engine 2050 manages a queue of application
requests, each requiring an application to be performed on a
set of data.

When compute engine 2050 requires access to a block of
memory, compute engine 2050 converts a virtual address for
the block of memory into a physical address. In one embodi-
ment of the present invention, compute engine 2050 inter-
nally maintains a limited translation buffer (not shown). The
internal translation buffer performs conversions within com-
pute engine 2050 for a limited number of virtual memory
addresses.

Compute engine 2050 employs MMU 2058 for virtual
memory address conversions not supported by the internal
translation buffer. In one embodiment, compute engine 2050
has separate conversion request interfaces coupled to MMU
2058 for data accesses and instruction accesses. As shown in
FIG. 18, compute engine 2050 employs request interfaces
2070 and 2072 for data accesses and request interface 2068
for instruction access.

In response to a conversion request, MMU 2058 provides
either a physical address and memory block size or a failed
access response. The failed access responses include: 1) no
corresponding physical address exists; 2) only read access is
allowed and compute engine 2050 is attempting to write; or 3)
access is denied.

After obtaining a physical address, compute engine 2050
provides the address to either data cache 2052 or instruction
cache 2054—data accesses go to data cache 2052, and
instruction accesses go to instruction cache 2054. In one
embodiment, first tier caches 2052 and 2054 are 4K direct-
mapped caches, with data cache 2052 being write-through to
second tier cache 2056. In an alternate embodiment, caches
2052 and 2054 are 8K 2-way set associative caches.

A first tier cache (2052 or 2054) addressed by compute
engine 2050 determines whether the addressed location
resides in the addressed first tier cache. If so, the cache allows
compute engine 2050 to perform the requested memory
access. Otherwise, the first tier cache forwards the memory
access of compute engine 2050 to second tier cache 2056. In
one embodiment second tier cache 2056 is a 64K 4-way set
associative cache.

Second tier cache 2056 makes the same determination as
the first tier cache. If second tier cache 2056 contains the
requested memory location, compute engine 2050 exchanges
information with second tier cache 2056 through first tier
cache 2052 or 2054. Instructions are exchanged through
instruction cache 2054, and data is exchanged through data
cache 2052. Otherwise, second tier cache 2056 places a
memory request to global snoop controller 2022, which per-
forms a memory retrieval process. In one embodiment, the
memory retrieval process is the process described above with
reference to FIG. 17. Greater detail and embodiments
addressing memory transfers will be described below.

Cache 2056 communicates with snoop controller 2022 via
point-to-point link 2013 and snoop ring interfaces 2021, and
2021,, as described in FIG. 16. Cache 2056 uses link 2013 to
request memory accesses outside cluster 2012. Second tier
cache 2056 receives and forwards snoop requests on snoop
ring interfaces 2021, and 2021;. Cache 2056 uses data ring
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interface segments 2020, and 2020, for exchanging data on
data ring 2020, as described above with reference to FIGS. 16
and 17.

In one embodiment, compute engine 2050 contains CPU
2060 coupled to coprocessor 2062. CPU 2060 is coupled to
MMU 2058, data cache 2052, and instruction cache 2054.
Instruction cache 2054 and data cache 2052 couple CPU 2060
to second tier cache 2056. Coprocessor 2062 is coupled to
data cache 2052 and MMU 2058. First tier data cache 2052
couples coprocessor 2062 to second tier cache 2056.

Coprocessor 2062 helps MPU 2010 overcome processor
utilization drawbacks associated with traditional multi-pro-
cessing systems. Coprocessor 2062 includes application spe-
cific processing engines designed to execute applications
assigned to compute engine 2050. This allows CPU 2060 to
offload application processing to coprocessor 2062, so CPU
2060 can effectively manage the queue of assigned applica-
tion.

In operation, CPU 2060 instructs coprocessor 2062 to per-
form an application from the application queue. Coprocessor
2062 uses its interfaces to MMU 2058 and data cache 2052 to
obtain access to the memory necessary for performing the
application. Both CPU 2060 and coprocessor 2062 perform
memory accesses as described above for compute engine
2050, except that coprocessor 2062 doesn’t perform instruc-
tion fetches.

In one embodiment, CPU 2060 and coprocessor 2062 each
include limited internal translation buffers for converting vir-
tual memory addresses to physical addresses. In one such
embodiment, CPU 2060 includes 2 translation buffer entries
for instruction accesses and 3 translation buffer entries for
dataaccesses. In one embodiment, coprocessor 2062 includes
4 translation buffer entries.

Coprocessor 2062 informs CPU 2060 once an application
is complete. CPU 2060 then removes the application from its
queue and instructs a new compute engine to perform the next
application—greater details on application management will
be provided below.

2. Processing Cluster—Multiple Compute Engines

FIG. 19 illustrates an alternate embodiment of processing
cluster 2012 in accordance with the present invention. In FIG.
19, cluster 2012 includes multiple compute engines operating
the same as above-described compute engine 2050. Cluster
2012 includes compute engine 2050 coupled to data cache
2052, instruction cache 2054, and MMU 2082. Compute
engine 2050 includes CPU 2060 and coprocessor 2062 hav-
ing the same coupling and operation described above in FIG.
18. In fact, all elements appearing in FIG. 19 with the same
numbering as in FIG. 18 have the same operation as described
in FIG. 18.

MMU 2082 and MMU 2084 operate the same as MMU
2058 in FIG. 18, except MMU 2082 and MMU 2084 each
support two compute engines. In an alternate embodiment,
cluster 2012 includes 4 MMUs, each coupled to a single
compute engine. Second tier cache 2080 operates the same as
second tier cache 2056 in FIG. 18, except second tier cache
2080 is coupled to and supports data caches 2052, 2092,
2096, and 2100 and instruction caches 2054, 2094, 2098, and
2102. Data caches 2052, 2092, 2096, and 2100 in FIG. 19
operate the same as data cache 2052 in FIG. 18, and instruc-
tion caches 2054, 2094, 2098, and 2102 operate the same as
instruction cache 2054 in FIG. 18. Compute engines 2050,
2086, 2088, and 2090 operate the same as compute engine
2050 in F1IG. 18.

Each compute engine (2050, 2086, 2088, and 2090) also
includes a CPU (2060, 2116, 2120, and 2124, respectively)
and a coprocessor (2062,2118, 2122, and 2126, respectively)
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coupled and operating the same as described for CPU 2060
and coprocessor 2062 in FIG. 18. Each CPU (2060, 2116,
2120, and 2124) is coupled to a data cache (2052,2092, 2096,
and 2100, respectively), instruction cache (2054, 2094, 2098,
and 2102, respectively), and MMU (2082 and 2084). Each
coprocessor (2062, 2118, 2122, and 2126, respectively) is
coupled to a data cache (2052, 2092, 2096, and 2100, respec-
tively) and MMU (2082 and 2084). Each CPU (2060, 2116,
2120, and 2124) communicates with the MMU (2082 and
2084) via separate conversion request interfaces for data
(2070, 20106, 2110, and 2114, respectively) and instructions
(2068, 20104, 20108, and 20112, respectively) accesses.
Each coprocessor (2062, 20118, 20122, and 20126) commu-
nicates with the MMU (2082 and 2084) via a conversion
request interface (2072, 2073, 2074, and 2075) for data
accesses.

In one embodiment, each coprocessor (2062, 2118, 2122,
and 2126) includes four internal translation buffers, and each
CPU (2060, 2116, 2120, and 2124) includes 5 internal trans-
lation buffers, as described above with reference to FIG. 18.
In one such embodiment, translation buffers in coprocessors
coupled to a common MMU contain the same address con-
versions.

In supporting two compute engines, MMU 2082 and MMU
2084 each provide arbitration logic to chose between request-
ing compute engines. In one embodiment, MMU 2082 and
MMU 2084 each arbitrate by servicing competing compute
engines on an alternating basis when competing address
translation requests are made. For example, in such an
embodiment, MMU 2082 first services a request from com-
pute engine 2050 and then services a request from compute
engine 2086, when simultaneous translation requests are
pending.

3. Processing Cluster Memory Management

The following describes a memory management system
for MPU 2010 in one embodiment of the present invention. In
this embodiment, MPU 2010 includes the circuitry described
above with reference to FIG. 19.

a. Data Ring

Data ring 2020 facilitates the exchange of data and instruc-
tions between clusters 2012, 2014, 2016, and 2018 and EBL
2024. Data ring 2020 carries packets with both header infor-
mation and a payload. The payload contains either data or
instructions from a requested memory location. In operation,
either a cluster or EBL. 2024 places a packet on a segment of
data ring 2020. For example, cluster 2018 drives data ring
segment 2020, into cluster 2012. The header information
identifies the intended target for the packet. The EBL and
each cluster pass the packet along data ring 2020 until the
packet reaches the intended target. When a packet reaches the
intended target (EBL 2024 or cluster 2012, 2014, 2016, or
2018) the packet is not transferred again.

In one embodiment of the present invention, data ring 2020
includes the following header signals: 1) Validity—indicating
whether the information on data ring 2020 is valid; 2) Clus-
ter—identifying the cluster that issues the memory request
leading to the data ring transfer; 3) Memory Request—iden-
tifying the memory request leading to the data ring transfer; 4)
MESI—providing ownership status; and 5) Transfer Done—
indicating whether the data ring transfer is the last in a con-
nected series of transfers. In addition to the header, data ring
2020 includes a payload. In one embodiment, the payload
carries 32 bytes. In alternate embodiments of the present
invention, different fields can be employed on the data ring.

In some instances, a cluster needs to transfer more bytes
than a single payload field can store. For example, second tier
cache 2080 typically transfers an entire 64 byte cache line. A
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transfer of this size is made using two transfers on data ring
2020—each carrying a 32 byte payload. By using the header
information, multiple data ring payload transfers can be con-
catenated to create a single payload in excess of 32 bytes. In
the first transfer, the Transfer Done field is set to indicate the
transfer is not done. In the second transfer, the Transfer Done
field indicates the transfer is done.

The MESI field provides status about the ownership of the
memory location containing the payload. A device initiating
a data ring transfer sets the MESI field, along with the other
header information. The MESI field has the following four
states: 1) Modified; 2) Exclusive; 3) Shared; and 4) Invalid. A
device sets the MESI field to Exclusive if the device possesses
sole ownership of the payload data prior to transfer on data
ring 2020. A device sets the MESI field to Modified if the
device modifies the payload data prior to transfer on data ring
2020—only an Exclusive or Modified owner can modify data.
A device sets the MESI field to Shared if the data being
transferred onto data ring 2020 currently has a Shared or
Exclusive setting in the MESI field and another entity
requests ownership of the data. A device sets the MESI field
to Invalid if the data to be transferred on data ring 2020 is
invalid. Examples of MESI field setting will be provided
below.

b. First Tier Cache Memory

FIG. 20aq illustrates a pipeline of operations performed by
first tier data caches 2052, 2092, 2096, 2100, in one embodi-
ment of the present invention. For ease of reference, FIG. 20
is explained with reference to data cache 2052, although the
implementation shown in FIG. 20 is applicable to all first tier
data caches.

In stage 2360, cache 2052 determines whether to select a
memory access request from CPU 2060, coprocessor 2062, or
second tier cache 2080. In one embodiment, cache 2052 gives
cache 2080 the highest priority and toggles between selecting
the CPU and coprocessor. As will be explained below, second
tier cache 2080 accesses first tier cache 2052 to provide fill
data when cache 2052 has a miss.

In stage 2362, cache 2052 determines whether cache 2052
contains the memory location for the requested access. In one
embodiment, cache 2052 performs a tag lookup using bits
from the memory address of the CPU, coprocessor, or second
tier cache. If cache 2052 detects a memory location match, the
cache’s data array is also accessed in stage 2362 and the
requested operation is performed.

In the case of a load operation from compute engine 2050,
cache 2052 supplies the requested data from the cache’s data
array to compute engine 2050. Inthe case of a store operation,
cache 2052 stores data supplied by compute engine 2050 in
the cache’s data array at the specified memory location. In
one embodiment of the present invention, cache 2052 is a
write-through cache that transfers all stores through to second
tier cache 2080. The store operation only writes data into
cache 2052 after a memory location match—cache 2052 is
not filled after a miss. In one such embodiment, cache 2052 is
relieved of maintaining cache line ownership.

In one embodiment of the present invention, cache 2052
implements stores using a read-modify-write protocol. In
such an embodiment, cache 2052 responds to store operations
by loading the entire data array cache line corresponding to
the addressed location into store buffer 2367. Cache 2052
modifies the data in store buffer 2367 with data from the store
instruction issued by compute engine 2050. Cache 2052 then
stores the modified cache line in the data array when cache
2052 has a free cycle. If a free cycle doesn’t occur before the
next write to store buffer 2367, cache 2052 executes the store
without using a free cycle.
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In an alternate embodiment, the store buffer is smaller than
an entire cache line, so cache 2052 only loads a portion of the
cache line into the store buffer. For example, in one embodi-
ment cache 2052 has a 64 byte cache line and a 16 byte store
buffer. In load operations, data bypasses store buffer 2367.

Cache 2052 also provides parity generation and checking.
When cache 2052 writes the data array, a selection is made in
stage 2360 between using store buffer data (SB Data) and
second tier cache fill data (ST Data). Cache 2052 also per-
forms parity generation on the selected data in stage 2360 and
writes the data array in stage 2362. Cache 2052 also parity
checks data supplied from the data array in stage 2362.

If cache 2052 does not detect an address match in stage
2362, then cache 2052 issues a memory request to second tier
cache 2080. Cache 2052 also issues a memory request to
cache 2080 if cache 2052 recognizes a memory operation as
non-cacheable.

Other memory related operations issued by compute
engine 2050 include pre-fetch and store-create. A pre-fetch
operation calls for cache 2052 to ensure that an identified
cache line is mapped into the data array of cache 2052. Cache
2052 operates the same as a load operation of a full cache line,
except no data is returned to compute engine 2050. If cache
2052 detects an address match in stage 2362 for a pre-fetch
operation, no further processing is required. If an address
miss is detected, cache 2052 forwards the pre-fetch request to
cache 2080. Cache 2052 loads any data returned by cache
2080 into the cache 2052 data array.

A store-create operation calls for cache 2052 to ensure that
cache 2052 is the sole owner of an identified cache line,
without regard for whether the cache line contains valid data.
Inone embodiment, a predetermined pattern of data is written
into the entire cache line. The predetermined pattern is
repeated throughout the entire cache line. Compute engine
2050 issues a store-create command as part of a store operand
for storing data into an entire cache line. All store-create
requests are forwarded to cache 2080, regardless of whether
an address match occurs.

In one embodiment, cache 2052 issues memory requests to
cache 2080 over a point-to-point link, as shown in FIGS. 18
and 19. This link allows cache 2080 to receive the request and
associated data and respond accordingly with data and con-
trol information. In one such embodiment, cache 2052 pro-
vides cache 2080 with a memory request that includes the
following fields: 1) Validity—indicating whether the request
is valid; 2) Address identifying the memory location
requested; and 3) Opcode—identifying the memory access
operation requested.

After receiving the memory request, cache 2080 generates
the following additional fields: 4) Dependency—identitying
memory access operations that must be performed before the
requested memory access; 5) Age—indicating the time
period the memory request has been pending; and 6) Sleep—
indicating whether the memory request has been placed in
sleep mode, preventing the memory request from being reis-
sued. Sleep mode will be explained in further detail below.
Cache 2080 sets the Dependency field in response to the
Opcode field, which identifies existing dependencies.

In one embodiment of the present invention, cache 2052
includes fill buffer 2366 and replay buffer 2368. Fill buffer
2366 maintains a list of memory locations from requests
transferred to cache 2080. The listed locations correspond to
requests calling for loads. Cache 2052 employs fill buffer
2366 to match incoming fill data from second tier cache 2080
with corresponding load commands. The corresponding load
command informs cache 2052 whether the incoming data is a
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cacheable load for storage in the cache 2052 data array or a
non-cacheable load for direct transfer to computer engine
2050.

As an additional benefit, fill buffer 2366 enables cache
2052 to avoid data corruption from an overlapping load and
store to the same memory location. If compute engine 2050
issues a store to a memory location listed in fill buffer 2366,
cache 2052 will not write data returned by cache 2080 for the
memory location to the data array. Cache 2052 removes a
memory location from fill buffer 2366 after cache 2080 ser-
vices the associated load. In one embodiment, fill buffer 2366
contains 5 entries.

Replay buffer 2368 assists cache 2052 in transferring data
from cache 2080 to compute engine 2050. Replay buffer 368
maintains a list of load requests forwarded to cache 2080.
Cache 2080 responds to a load request by providing an entire
cache line—up to 64 bytes in one embodiment. When a load
request is listed in replay buffer 2368, cache 2052 extracts the
requested load memory out of the returned cache line for
compute engine 2050. This relieves cache 2052 from retriev-
ing the desired memory from the data array after a fill com-
pletes.

Cache 2052 also uses replay buffer 2368 to perform any
operations necessary before transferring the extracted data
back to compute engine 2050. For example, cache 2080
returns an entire cache line of data, but in some instances
compute engine 2050 only requests a portion of the cache
line. Replay buffer 2368 alerts cache 2052, so cache 2052 can
realign the extracted data to appear in the data path byte
positions desired by compute engine 2050. The desired data
operations, such as realignments and rotations, are stored in
replay buffer 2368 along with their corresponding requests.

FIG. 206 shows a pipeline of operations for first tier
instructions caches 2054, 2094, 2098, and 2102 in one
embodiment of the present invention. The pipeline shown in
FIG. 205 is similar to the pipeline shown in FIG. 20a, with the
following exceptions. A coprocessor does not access a first
tier instruction cache, so the cache only needs to select
between a CPU and second tier cache in stage 2360. A CPU
does not write to an instruction cache, so only second tier data
(ST Data) is written into the cache’s data array in step 2362.
An instruction cache does not include either a fill buffer,
replay bufter, or store buffer.

c. Second Tier Cache Memory

FIG. 21 illustrates a pipeline of operations implemented by
second tier cache 2080 in one embodiment of the present
invention. In stage 2370, cache 2080 accepts memory
requests. In one embodiment, cache 2080 is coupled to
receive memory requests from external sources (Fill), global
snoop controller 2022 (Snoop), first tier data caches 2052,
2092, 2096, and 2100 (FTD-2052; FTD-2092; FTD-2096;
FTD-2100), and first tier instruction caches 2054, 2094,
2098, and 2102 (FTI-2054; FTI-2094; FTI-2098; FT1-2102).
In one embodiment, external sources include external bus
logic 2024 and other clusters seeking to drive data on data ring
20.

As shown in stage 2370, cache 2080 includes memory
request queues 2382, 2384, 2386, and 2388 for receiving and
maintaining memory requests from data caches 2054, 2052,
2092, 2096, and 2100, respectively. In one embodiment,
memory request queues 2382, 2384, 2386, and 2388 hold up
to 8 memory requests. Each queue entry contains the above-
described memory request descriptor, including the Validity,
Address, Opcode, Dependency, Age, and Sleep fields. If a
first tier data cache attempts to make a request when its
associated request queue is full, cache 2080 signals the first
tier cache that the request cannot be accepted. In one embodi-
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ment, the first tier cache responds by submitting the request
later. In an alternate embodiment, the first tier cache kills the
requested memory operation.

Cache 2080 also includes snoop queue 2390 for receiving
and maintaining requests from snoop ring 2021. Upon receiv-
ing a snoop request, cache 2080 buffers the request in queue
2390 and forwards the request to the next cluster on snoop
ring 2021. In one embodiment of the present invention, global
snoop controller 2022 issues the following types of snoop
requests: 1) Own—instructing a cluster to transfer exclusive
ownership of a memory location and transfer its content to
another cluster after performing any necessary coherency
updates; 2) Share—instructing a cluster to transfer shared
ownership of a memory location and transfer its contents to
another cluster after performing any necessary coherency
updates; and 3) Kill—instructing a cluster to release owner-
ship of a memory location without performing any data trans-
fers or coherency updates.

In one such embodiment, snoop requests include descrip-
tors with the following fields: 1) Validity—indicating
whether the snoop request is valid; 2) Cluster—identifying
the cluster that issued the memory request leading to the
snoop request; 3) Memory Request—identifying the memory
request leading to the snoop request; 4) ID—an identifier
global snoop controller 2022 assigns to the snoop request; 5)
Address—identifying the memory location requested; and 5)
Opcode—identifying the type of snoop request.

Although not shown, cache 2080 includes receive data
buffers, in addition to the request queues shown in stage 2370.
Thereceive data buffers hold data passed from cache 2052 for
use in requested memory operations, such as stores. In one
embodiment, cache 2080 does not contain the receive data
buffers for data received from data ring 2020 along with Fill
requests, since Fill requests are serviced with the highest
priority.

Cache 2080 includes a scheduler for assigning priority to
the above-described memory requests. In stage 2370, the
scheduler begins the prioritization process by selecting
requests that originate from snoop queue 390 and each of
compute engines 2050, 2086, 2088, and 2090, if any exist. For
snoop request queue 2390, the scheduler selects the first
request with a Validity field showing the request is valid. In
one embodiment, the scheduler also selects an entry before it
remains in queue 2390 for a predetermined period of time.

For each compute engine, the scheduler gives first tier
instruction cache requests (FT1) priority over first tier data
cache requests (FTD). In each data cache request queue
(2382, 2384, 2386, and 2388), the scheduler assigns priority
to memory requests based on predetermined criteria. In one
embodiment, the predetermined criteria are programmable. A
user can elect to have cache 2080 assign priority based on a
request’s Opcode field or the age of the request. The scheduler
employs the above-described descriptors to make these pri-
ority determinations.

For purposes of illustration, the scheduler’s programmable
prioritization is described with reference to queue 2382. The
same prioritization process is performed for queues 2384,
2386, and 2388. In one embodiment, priority is given to load
requests. The scheduler in cache 2080 reviews the Opcode
fields of the request descriptors in queue 2382 to identify all
load operations. In an alternate embodiment, store operations
are favored. The scheduler also identifies these operations by
employing the Opcode field.

Inyet another embodiment, cache 2080 gives priority to the
oldest requests in queue 2382. The scheduler in cache 2080
accesses the Age field in the request descriptors in queue 2382
to determine the oldest memory request. Alternative embodi-
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ments also provide for giving priority to the newest request. In
some embodiments of the present invention, prioritization
criteria are combined. For example, cache 2080 gives priority
to load operations and a higher priority to older load opera-
tions. Those of ordinary skill in the art recognize that many
priority criteria combinations are possible.

In stage 2372, the scheduler selects a single request from
the following: 1) the selected first tier cache requests; 2) the
selected snoop request from stage 2370; and 3) Fill. In one
embodiment, the scheduler gives Fill the highest priority,
followed by Snoop, which is followed by the first tier cache
requests. In one embodiment, the scheduler in cache 2080
services the first tier cache requests on a round robin basis.

In stage 2374, cache 2080 determines whether it contains
the memory location identified in the selected request from
stage 2372. If the selected request is Fill from data ring 2020,
cache 2080 uses information from the header on data ring
2020 to determine whether the cluster containing cache 2080
is the target cluster for the data ring packet. Cache 2080
examines the header’s Cluster field to determine whether the
Fill request corresponds to the cluster containing cache 2080.

If any request other than Fill is selected in stage 2372,
cache 2080 uses the Address field from the corresponding
request descriptor to perform a tag lookup operation. In the
tag lookup operation, cache 2080 uses one set of bits in the
request descriptor’s Address field to identify a targeted set of
ways. Cache 2080 then compares another set of bits in the
Address field to tags for the selected ways. If a tag match
occurs, the requested memory location is in the cache 2080
data array. Otherwise, there is a cache miss. In one such
embodiment, cache 2080 is a 64K 4-way set associative cache
with a cache line size of 64 bytes.

In one embodiment, as shown in FIG. 21, cache 2080
performs the tag lookup or Cluster field comparison prior to
reading any data from the data array in cache 2080. This
differs from a traditional multiple-way set associate cache. A
traditional multiple-way cache reads a line of data from each
addressed way at the same time a tag comparison is made. If
there is not a match, the cache discards all retrieved data. If
there is a match, the cache employs the retrieved data from the
selected way. Simultaneously retrieving data from multiple
ways consumes considerable amounts of both power and
circuit area.

Conserving both power and circuit area are important con-
siderations in manufacturing integrated circuits. In one
embodiment, cache 2080 is formed on a single integrated
circuit. In another embodiment, MPU 2010 is formed on a
single integrated circuit. Performing the lookups before
retrieving cache memory data makes cache 2080 more suit-
able for inclusion on a single integrated circuit.

In stage 2376, cache 2080 responds to the cache address
comparison performed in stage 2374. Cache 2080 contains
read external request queue (“read ERQ™) 2392 and write
external request queue (“write ERQ”) 2394 for responding to
hits and misses detected in stage 2374. Read ERQ 2392 and
write ERQ 2394 allow cache 2080 to forward memory access
requests to global snoop controller 2022 for further process-
ing.

In one embodiment, read ERQ 2392 contains 16 entries,
with 2 entries reserved for each compute engine. Read ERQ
2392 reserves entries, because excessive pre-fetch operations
from one compute engine may otherwise consume the entire
read ERQ. In one embodiment, write ERQ 2394 includes 4
entries. Write ERQ 2394 reserves one entry for requests that
require global snoop controller 2022 to issue snoop requests
on snoop ring 2021.
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Processing First Tier Request Hits:

Once cache 2080 detects an address match for a first tier
load or store request, cache 2080 accesses internal data array
2396, which contains all the cached memory locations. The
access results in data array 2396 outputting a cache line
containing the addressed memory location in stage 2378. In
one embodiment, the data array has a 64 byte cache line and
is formed by 8 8K buffers, each having a data path 8 bytes
wide. In such an embodiment, cache 2080 accesses a cache
line by addressing the same offset address in each of the 8
buffers.

An Error Correcting Code (“ECC”) check is performed on
the retrieved cache line to check and correct any cache line
errors. ECC is a well-known error detection and correction
operation. The ECC operation overlaps between stages 2378
and 2380.

Ifthe requested operation is a load, cache 2080 supplies the
cache line contents to first tier return buffer 2391. First tier
return buffer 2391 is coupled to provide the cache line to the
requesting first tier cache. In one embodiment of the present
invention, cache 2080 includes multiple first tier return buft-
ers (not shown) for transferring data back to first tier caches.
In one such embodiment, cache 2080 includes 4 first tier
return buffers.

If'the requested operation is a store, cache 2080 performs a
read-modify-write operation. Cache 2080 supplies the
addressed cache line to store buffer 2393 in stage 2380. Cache
2080 modifies the store buffer bytes addressed by the first tier
memory request. Cache 2080 then forwards the contents of
the store buffer to data array 2396. Cache 2080 makes this
transfer once cache 2080 has an idle cycle or a predetermined
period of time elapses. For stores, no data is returned to first
tier data cache 2052.

FIG. 22 illustrates the pipeline stage operations employed
by cache 2080 to transfer the cache line in a store buffer to
data array 2396 and first tier return buffer 2393. This process
occurs in parallel with the above-described pipeline stages. In
stage 2374, cache 2080 selects between pending data array
writes from store buffer 2393 and data ring 2020 via Fill
requests. In one embodiment, Fill requests take priority. In
one such embodiment, load accesses to data array 2396 have
priority over writes from store buffer 2393. In alternate
embodiments, different priorities are assigned.

In stage 2376, cache 2080 generates an ECC checksum for
the data selected in stage 2374. In stage 2378, cache 2080
stores the modified store buffer data in the cache line corre-
sponding to the first tier request’s Address field. Cache 2080
performs an ECC check between stages 2378 and 2380.
Cache 2080 then passes the store buffer data to first return
buffer 2391 in stage 2380 for return to the first tier cache.

If the hit request is a pre-fetch, cache 2080 operates the
same as explained above for a load.

Processing First Tier Request Misses:

If the missed request’s Opcode field calls for a non-cache-
able load, cache 2080 forwards the missed request’s descrip-
tor to read ERQ 2392. Read ERQ forwards the request
descriptor to global snoop controller 2022, which initiates
retrieval of the requested data from main memory 2026 by
EBL 2024.

If the missed request’s Opcode field calls for a cacheable
load, cache 2080 performs as described above for a non-
cacheable load with the following modifications. Global
snoop controller 2022 first initiates retrieval of the requested
data from other clusters by issuing a snoop-share request on
snoop ring 2021. If the snoop request does not return the
desired data, then global snoop controller 2022 initiates
retrieval from main memory 2026 via EBL 2024. Cache 2080
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also performs an eviction procedure. In the eviction proce-
dure, cache 2080 selects a location in the data array for a
cache line of data containing the requested memory location.
If the selected data array location contains data that has not
been modified, cache 2080 overwrites the selected location
when the requested data is eventually returned on data ring
2020.

Ifthe selected data array location has been modified, cache
2080 writes the cache line back to main memory 2026 using
write ERQ 2394 and data ring 2020. Cache 2080 submits a
request descriptor to write ERQ 2394 in stage 2376. The
request descriptor is in the format of a first tier descriptor.
Write ERQ 2394 forwards the descriptor to global snoop
controller 2022. Snoop controller 2022 instructs external bus
logic 2024 to capture the cache line off data ring 2020 and
transfer it to main memory 2026. Global snoop controller
2022 provides external bus logic 2024 with descriptor infor-
mation that enables logic 2024 to recognize the cache line on
data ring 2020. In one embodiment, this descriptor includes
the above-described information found in a snoop request
descriptor.

Cache 2080 accesses the selected cache line in data array
2396, as described above, and forwards the line to data ring
write buffer 2395 in stages 2376 through 2380 (FIG. 21). Data
ring write buffer 2395 is coupled to provide the cache line on
data ring 2020. In one embodiment, cache 2080 includes 4
data ring write buffers. Cache 2080 sets the data ring header
information for two 32 byte payload transfers as follows: 1)
Validity—valid; 2) Cluster—External Bus Logic 2024; 3)
Memory Request Indicator—corresponding to the request
sent to write ERQ 2394; 4) MESI—Invalid; and 5) Transfer
Done—set to “not done” for the first 32 byte transfer and
“done” for the second 32 byte transfer. The header informa-
tion enables EBL 2024 to capture the cache line off data ring
2020 and transfer it to main memory 2026.

Cache 2080 performs an extra operation if a store has been
performed on the evicted cache line and the store buffer data
has not been written to the data array 2396. In this instance,
cache 2080 utilizes the data selection circuitry from stage
2380 (FIG. 22) to transfer the data directly from store buffer
2393 to data ring write buffer 2395.

Ifthe missed request’s Opcode field calls for a non-cache-
able store, cache 2080 forwards the request to write ERQ
2394 in stage 2376 for submission to global snoop controller
2022. Global snoop controller 2022 provides a main memory
write request to external bus logic 2024, as described above.
In stage 2378 (F1G. 22), cache controller 2080 selects the data
from the non-cacheable store operation. In stage 2380, cache
2080 forwards the data to data ring write buffer 2395. Cache
2080 sets the data ring header as follows for two 32 byte
payload transfers: 1) Validity—valid; 2) Cluster—External
Bus Logic 2024; 3) Memory Request—corresponding to the
request sent to write ERQ 2394; 4) MESI Invalid; and 5)
Transfer Done—set to “not done” for the first 32 byte transfer
and “done” for the second 32 byte transfer.

If the missed request’s Opcode field calls for a cacheable
store, cache 2080 performs the same operation as explained
above for a missed cacheable load. This is because cache
2080 performs stores using a read-modify-write operation. In
one embodiment, snoop controller 2022 issues a snoop-own
request in response to the read ERQ descriptor for cache
2080.

If the missed request’s Opcode field calls for a pre-fetch,
cache 2080 performs the same operation as explained above
for a missed cacheable load.
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Processing First Tier Requests for Store-Create Opera-
tions:

When a request’s Opcode field calls for a store-create
operation, cache 2080 performs an address match in storage
2374. If there is not a match, cache 2080 forwards the request
to global snoop controller 2022 through read ERQ 2392 in
stage 2376. Global snoop controller 2022 responds by issuing
a snoop-kill request on snoop ring 2021. The snoop-kill
request instructs all other clusters to relinquish control of the
identified memory location. Second tier cache responses to
snoop-kill requests will be explained below.

If cache 2080 discovers an address match in stage 2374,
cache 2080 determines whether the matching cache line has
an Exclusive or Modified MESI state. In either of these cases,
cache 2080 takes no further action. If the status is Shared, then
cache 2080 forwards the request to snoop controller 2022 as
described above for the non-matching case.

Processing Snoop Request Hits:

If the snoop request Opcode field calls for an own opera-
tion, cache 2080 relinquishes ownership of the addressed
cache line and transfers the line’s contents onto data ring
2020. Prior to transferring the cache line, cache 2080 updates
the line, if necessary.

Cache 2080 accesses data array 2396 in stage 2378 (FIG.
21) to retrieve the contents of the cache line containing the
desired data—the Address field in the snoop request descrip-
tor identifies the desired cache line. This access operates the
same as described above for first tier cacheable load hits.
Cache 2080 performs ECC checking and correction is stages
2378 and 2380 and writes the cache line to data ring write
buffer 2395. Alternatively, if the retrieved cache line buffer
needs to be updated, cache 2080 transfers the contents of store
buffer 2393 to data ring write buffer 2395 (FIG. 22).

Cache 2080 provides the following header information to
the data ring write buffer along with the cache line: 1) Valid-
ity—valid; 2) Cluster—same as in the snoop request; 3)
Memory Request—same as in the snoop request; 4) MESI—
Exclusive (if the data was never modified while in cache
2080) or Modified (if the data was modified while in cache
2080); and 5) Transfer Done—*“not done™, except for the
header connected with the final payload for the cache line.
Cache 2080 then transfers the contents of data ring write
buffer 2395 onto data ring 2020.

Cache 2080 also provides global snoop controller 2022
with an acknowledgement that cache 2080 serviced the snoop
request. In one embodiment, cache 2080 performs the
acknowledgement via the point-to-point link with snoop con-
troller 2022.

If the snoop request Opcode field calls for a share opera-
tion, cache 2080 performs the same as described above for a
read operation with the following exceptions. Cache 2080
does not necessarily relinquish ownership. Cache 2080 sets
the MESI field to Shared if the requested cache line’s current
MESI status is Exclusive or Shared. However, if the current
MESI status for the requested cache line is Modified, then
cache 2080 sets the MESI data ring field to Modified and
relinquishes ownership of the cache line. Cache 2080 also
provides global snoop controller 2022 with an acknowledge-
ment that cache 2080 serviced the snoop request, as described
above.

If the snoop request Opcode field calls for a kill operation,
cache 2080 relinquishes ownership of the addressed cache
line and does not transfer the line’s contents onto data ring
2020. Cache 2080 also provides global snoop controller 2022
with an acknowledgement that cache 2080 serviced the snoop
request, as described above.
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Processing Snoop Request Misses:

Ifthe snoop request is a miss, cache 2080 merely provides
an acknowledgement to global snoop controller 2022 that
cache 2080 serviced the snoop request.

Processing Fill Requests With Cluster Matches:

If a Fill request has a cluster match, cache 2080 retrieves
the original request that led to the incoming data ring Fill
request. The original request is contained in either read ERQ
2392 or write ERQ 2394. The Memory Request field from the
incoming data ring header identifies the corresponding entry
in read ERQ 2392 or write ERQ 2394. Cache 2080 employs
the Address and Opcode fields from the original request in
performing further processing.

If the original request’s Opcode field calls for a cacheable
load, cache 2080 transfers the incoming data ring payload
data into data array 2396 and first tier return buffer 2391. In
stage 2374, (FIG. 22) cache 2080 selects the Fill Data, which
is the payload from data ring 2020. In stage 2376, cache 2080
performs ECC generation. In stage 2378, cache 2080
accesses data array 2396 and writes the Fill Data into the
addressed cache line. Cache 2080 performs the data array
access based on the Address field in the original request
descriptor. As explained above, cache 2080 previously
assigned the Address field address a location in data array
2396 before forwarding the original request to global snoop
controller 2022. The data array access also places the Fill
Data into first tier return buffer 2391. Cache 2080 performs
ECC checking in stages 2378 and 2380 and loads first tier
return buffer 2391.

Ifthe original request’s Opcode field calls for a non-cache-
able load, cache 2080 selects Fill Data in stage 2378 (FIG.
22). Cache 2080 then forwards the Fill Data to first tier return
buffer 2391 in stage 2380. First tier return buffer 2391 passes
the payload data back to the first tier cache requesting the
load.

If the original request’s Opcode field calls for a cacheable
store, cache 2080 responds as follows in one embodiment.
First, cache 2080 places the Fill Data in data array 2396 cache
2080 performs the same operations described above for a
response to a cacheable load Fill request. Next, cache 2080
performs a store using the data originally supplied by the
requesting compute engine—cache 2080 performs the same
operations as described above for a response to a cacheable
store first tier request with a hit.

In an alternate embodiment, cache 2080 stores the data
originally provided by the requesting compute engine in store
buffer 2393. Cache 2080 then compares the store buffer data
with the Fill Data modifying store buffer 2393 to include Fill
Data in bit positions not targeted for new data storage in the
store request. Cache 2080 writes the contents of store buffer
2393 to data array 2396 when there is an idle cycle or another
access to store buffer 2393 is necessary, whichever occurs
first.

If the original request’s Opcode field calls for a pre-fetch,
cache 2080 responds the same as for a cacheable load Fill
request.

Processing Fill Requests Without Cluster Matches:

If a Fill request does not have a cluster match, cache 2080
merely places the incoming data ring header and payload
back onto data ring 2020.

Cache 2080 also manages snoop request queue 2390 and
data cache request queues 2382, 2384, 2386, and 2388. Once
a request from snoop request queue 2390 or data cache
request queue 2382, 2384, 2386 or 2388 is sent to read ERQ
2392 or write ERQ 2394, cache 2080 invalidates the request
to make room for more requests. Once a read ERQ request or
write ERQ request is serviced, cache 2080 removes the
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request from the ERQ. Cache 2080 removes a request by
setting the request’s Validity field to an invalid status.

In one embodiment, cache 2080 also includes a sleep mode
to aid in queue management. Cache 2080 employs sleep
mode when either read ERQ 2392 or write ERQ 2394 is full
and cannot accept another request from a first tier data cache
request queue or snoop request queue. Instead of refusing
service to a request or flushing the cache pipeline, cache 2080
places the first tier or snoop request in a sleep mode by setting
the Sleep field in the request descriptor. When read ER(QQ 2392
or write ERQ 2394 can service the request, cache 2080
removes the request from sleep mode and allows it to be
reissued in the pipeline.

In another embodiment of the invention, the scheduler in
cache 2080 filters the order of servicing first tier data cache
requests to ensure that data is not corrupted. For example,
CPU 2060 may issue a load instruction for a memory loca-
tion, followed by a store for the same location. Theload needs
to occur first to avoid loading improper data. Due to either the
CPU’s pipeline or a reprioritization by cache 2080, the order
of the load and store commands in the above example can
become reversed.

Processors traditionally resolve the dilemma in the above
example by issuing no instructions until the load in the above
example is completed. This solution, however, has the draw-
back of slowing processing speed instruction cycles go by
without the CPU performing any instructions.

In one embodiment of the present invention, the prioritiza-
tion filter of cache 2080 overcomes the drawback of the
traditional processor solution. Cache 2080 allows memory
requests to be reordered, but no request is allowed to precede
another request upon which itis dependent. For example, a set
of'requests calls for a load from location A, a store to location
A after the load from A, and a load from memory location B.
The store to A is dependent on the load from A being per-
formed first. Otherwise, the store to A corrupts the load from
A. The load from A and load from B are not dependent on
other instructions preceding them. Cache 2080 allows the
load from A and load from B to be performed in any order, but
the store to A is not allowed to proceed until the load from A
is complete. This allows cache 2080 to service the load from
B, while waiting for the load from A to complete. No pro-
cessing time needs to go idle.

Cache 2080 implements the prioritization filter using read
ERQ 2392, write ERQ 2394, and the Dependency field in a
first tier data cache request descriptor. The Dependency field
identifies requests in the first tier data cache request queue
that must precede the dependent request. Cache 2080 does not
select the dependent request from the data cache request
queue until all the dependent requests have been serviced.
Cache 2080 recognizes a request as serviced once the
request’s Validity field is set to an invalid state, as described
above.

C. Global Snoop Controller

Global snoop controller 2022 responds to requests issued
by clusters 2012, 2014, 2016, and 2018. As demonstrated
above, these requests come from read ERQ and write ERQ
buffers in second tier caches. The requests instruct global
snoop controller 2022 to either issue a snoop request or an
access to main memory. Additionally, snoop controller 2022
converts an own or share snoop request into a main memory
access request to EBL. 2024 when no cluster performs a
requested memory transfer. Snoop controller 2022 uses the
above-described acknowledgements provided by the clus-
ters’ second tier caches to keep track of memory transfers
performed by clusters.
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D. Application Processing

FIG. 23a illustrates a process employed by MPU 2010 for
executing applications in one embodiment of the present
invention. FIG. 23a illustrates a process in which MPU 2010
is employed in an application-based router in a communica-
tions network. Generally, an application-based router identi-
fies and executes applications that need to be performed on
data packets received from a communication medium. Once
the applications are performed for a packet, the router deter-
mines the next network destination for the packet and trans-
fers the packet over the communications medium.

MPU 2010 receives a data packet from a communications
medium coupled to MPU 2010 (step 2130). In one embodi-
ment, MPU 2010 is coupled to an IEEE 802.3 compliant
network running Gigabit Ethernet. In other embodiments,
MPU 2010 is coupled to different networks and in some
instances operates as a component in a wide area network. A
compute engine in MPU 2010, such as compute engine 2050
in FIG. 19, is responsible for receiving packets. In such an
embodiment, coprocessor 2062 includes application specific
circuitry coupled to the communications medium for receiv-
ing packets. Coprocessor 2062 also includes application spe-
cific circuitry for storing the packets in data cache 2052 and
second tier cache 2080. The reception process and related
coprocessor circuitry will be described below in greater
detail.

Compute engine 2050 transfers ownership of received
packets to a flow control compute engine, such as compute
engine 2086, 2088, or 2090 in FIG. 19 (step 2132). Compute
engine 2050 transfers packet ownership by placing an entry in
the application queue of the flow control compute engine.

The flow control compute engine forwards ownership of
each packet to a compute engine in a pipeline set of compute
engines (step 2134). The pipeline set of compute engines is a
set of compute engines that will combine to perform applica-
tions required for the forwarded packet. The flow control
compute engine determines the appropriate pipeline by
examining the packet to identify the applications to be per-
formed. The flow control compute engine transfers ownership
to a pipeline capable of performing the required applications.

In one embodiment of the present invention, the flow con-
trol compute engine uses the projected speed of processing
applications as a consideration in selecting a pipeline. Some
packets require significantly more processing than others. A
limited number of pipelines are designated to receive such
packets, in order to avoid these packets consuming all of the
MPU processing resources.

After the flow control compute engine assigns the packet to
a pipeline (step 2134), a pipeline compute engine performs a
required application for the assigned packet (step 2136).
Once the application is completed, the pipeline compute
engine determines whether any applications still need to be
performed (step 2138). If more applications remain, the pipe-
line compute engine forwards ownership of the packet to
another compute engine in the pipeline (step 2134) and the
above-described process is repeated. This enables multiple
services to be performed by a single MPU. If no applications
remain, the pipeline compute engine forwards ownership of
the packet to a transmit compute engine (step 2140).

The transmit compute engine transmits the data packetto a
new destination of the network, via the communications
medium (step 2142). In one such embodiment, the transmit
compute engine includes a coprocessor with application spe-
cific circuitry for transmitting packets. The coprocessor also
includes application specific circuitry for retrieving the pack-
ets from memory. The transmission process and related
coprocessor circuitry will be described below in greater
detail.
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FIG. 235 illustrates a process for executing applications in
an alternate embodiment of the present invention. This
embodiment employs multiple multi-processor units, such as
MPU 2010. In this embodiment, the multi-processor units are
coupled together over a communications medium. In one
version, the multi-processor units are coupled together by
cross-bar switches, such as cross-bar switches 3010 and 3110
described below with reference to FIGS. 36-45.

In the embodiment shown in FIG. 235, steps with the same
reference numbers as steps in FIG. 234 operate as described
for FIG. 23a. The difference is that packets are assigned to a
pipeline set of multi-processor units, instead of a pipeline set
of compute engines. Each multi-processor unit in a pipeline
transfers packets to the next multi-processor unit in the pipe-
line via the communications medium (step 2133). In one such
embodiment, each multi-processor unit has a compute engine
coprocessor with specialized circuitry for performing com-
munications medium receptions and transmissions, as well as
exchanging data with cache memory. In one version of the
FIG. 235 process, each multi-processor unit performs a dedi-
cated application. In alternate embodiments, a multi-proces-
sor unit performs multiple applications.

E. Coprocessor

As described above, MPU 2010 employs coprocessors in
cluster compute engines to expedite application processing.
The following sets forth coprocessor implementations
employed in one set of embodiments of the present invention.
One of ordinary skill will recognize that alternate coprocessor
implementations can also be employed in an MPU in accor-
dance with the present invention.

1. Coprocessor Architecture and Operation

FIG. 24a illustrates a coprocessor in one embodiment of
the present invention, such as coprocessor 2062 from FIGS.
18 and 19. Coprocessor 2062 includes sequencers 2150 and
2152, each coupled to CPU 2060, arbiter 2176, and a set of
application engines. The application engines coupled to
sequencer 2150 include streaming input engine 2154, stream-
ing output engine 2162, and other application engines 2156,
2158, and 2160. The application engines coupled to
sequencer 2152 include streaming input engine 2164, stream-
ing output engine 2172, and other application engines 2166,
2168, and 2170. In alternate embodiments any number of
application engines are coupled to sequencers 2150 and 2152.

Sequencers 2150 and 2152 direct the operation of their
respective coupled engines in response to instructions
received from CPU 2060. In one embodiment, sequencers
2150 and 2152 are micro-code based sequencers, executing
micro-code routines in response to instructions from CPU
2060. Sequencers 2150 and 2152 provide output signals and
instructions that control their respectively coupled engines in
response to these routines. Sequencers 2150 and 2152 also
respond to signals and data provided by their respectively
coupled engines. Sequencers 2150 and 2152 additionally per-
form application processing internally in response to CPU
2060 instructions.

Streaming input engines 2154 and 2164 each couple copro-
cessor 2062 to data cache 2052 for retrieving data. Streaming
output engines 2162 and 2172 each couple coprocessor 2062
to data cache 2052 for storing data to memory. Arbiter 2176
couples streaming input engines 2154 and 2164, and stream-
ing output engines 2162 and 2172, and sequencers 2150 and
2152 to data cache 2052. In one embodiment, arbiter 2176
receives and multiplexes the data paths for the entities on
coprocessor 2062. Arbiter 2176 ensures that only one entity at
a time receives access to the interface lines between copro-
cessor 62 and data cache 2051. MMU 2174 is coupled to
arbiter 2176 to provide internal conversions between virtual
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and physical addresses. In one embodiment of the present
invention, arbiter 2176 performs a round-robin arbitration
scheme. Micro-MMU 2174 contains the above-referenced
internal translation buffers for coprocessor 2062 and provides
coprocessor 2062’s interface to MM U 2058 (F1G. 18) or 2082
(FIG. 19).

Application engines 2156, 2158, 2160, 2166, 2168, and
2170 each perform a data processing application relevant to
the job being performed by MPU 2010. For example, when
MPU 2010 is employed in one embodiment as an application
based router, application engines 2156, 2158, 2160, 2166,
2168, and 2170 each perform one of the following: 1) data
string copies; 2) polynomial hashing; 3) pattern searching; 4)
RSA modulo exponentiation; 5) receiving data packets from
acommunications medium; 6) transmitting data packets onto
a communications medium; and 7) data encryption and
decryption.

Application engines 2156, 2158, and 2160 are coupled to
provide data to streaming output engine 2162 and receive data
from streaming input engine 2154. Application engines 2166,
2168, and 2170 are coupled to provide data to streaming
output engine 2172 and receive data from streaming input
engine 2164.

FIG. 24b shows an embodiment of coprocessor 2062 with
application engines 2156 and 2166 designed to perform the
data string copy application. In this embodiment, engines
2156 and 2166 are coupled to provide string copy output data
to engine sets 2158, 2160, and 2162, and 2168, 2170, and
2172, respectively. FIG. 24¢ shows an embodiment of copro-
cessor 2062, where engine 2160 is a transmission media
access controller (“TxMAC”) and engine 2170 is a reception
media access controller (RxMAC”). TXMAC 2160 transmits
packets onto a communications medium, and RxMAC 2170
receives packets from a communications medium. These two
engines will be described in greater detail below.

One advantage of the embodiment of coprocessor 2062
shown in FIGS. 24a-24¢ is the modularity. Coprocessor 2062
can easily be customized to accommodate many different
applications. For example, in one embodiment only one com-
pute engine receives and transmits network packets. In this
case, only one coprocessor contains an RXRMAC and TxMAC,
while other coprocessors in MPU 2010 are customized with
different data processing applications. Coprocessor 2062
supports modularity by providing a uniform interface to
application engines, except streaming input engines 2154 and
2164 and streaming output engines 2162 and 2172.

2. Sequencer

FIG. 25 shows an interface between CPU 2060 and
sequencers 2150 and 2152 in coprocessor 2062 in one
embodiment of the present invention. CPU 2060 communi-
cates with sequencer 2150 and 2152 through data registers
2180 and 2184, respectively, and control registers 2182 and
2186, respectively. CPU 2060 has address lines and data lines
coupled to the above-listed registers. Data registers 2180 and
control registers 2182 are each coupled to exchange informa-
tion with micro-code engine and logic block 2188. Block
2188 interfaces to the engines in coprocessor 2062. Data
register 2184 and control registers 2186 are each coupled to
exchange information with micro-code engine and logic
block 2190. Block 2190 interfaces to the engines in copro-
cessor 2062.

CPU 2060 is coupled to exchange the following signals
with sequencers 2150 and 2152: 1) Interrupt (INT)—outputs
from sequencers 2150 and 2152 indicating an assigned appli-
cation is complete; 2) Read Allowed—outputs from sequenc-
ers 2150 and 2152 indicating access to data and control reg-
isters is permissible; 3) Running—outputs from sequencers
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2150 and 2152 indicating that an assigned application is
complete; 4) Start—outputs from CPU 2060 indicating that
sequencer operation is to begin; and 5) Opcode outputs from
CPU 2060 identifying the set of micro-code instructions for
the sequencer to execute after the assertion of Start.

In operation, CPU 2060 offloads performance of assigned
applications to coprocessor 2062. CPU 2060 instructs
sequencers 2150 and 2152 by writing instructions and data
into respective data registers 2180 and 2182 and control reg-
isters 2184 and 2186. The instructions forwarded by CPU
2060 prompt either sequencer 2150 or sequencer 2152 to
begin executing a routine in the sequencer’s micro-code. The
executing sequencer either performs the application by run-
ning a micro-code routine or instructing an application engine
to perform the offloaded application. While the application is
running, the sequencer asserts the Running signal, and when
the application is done the sequencer asserts the Interrupt
signal. This allows CPU 2060 to detect and respond to an
application’s completion either by polling the Running signal
or employing interrupt service routines.

FIG. 26 shows an interface between sequencer 2150 and its
related application engines in one embodiment of the present
invention. The same interface is employed for sequencer
2152.

Output data interface 2200 and input data interface 2202 of
sequencer 2150 are coupled to engines 2156, 2158, and 2160.
Output data interface 2200 provides data to engines 2156,
2158, and 2160, and input data interface 2202 retrieves data
from engines 2156, 2158, and 2160. In one embodiment, data
interfaces 2200 and 2202 are each 32 bits wide.

Sequencer 2150 provides enable output 2204 to engines
2156, 2158, and 2160. Enable output 2204 indicates which
application block is activated. In one embodiment of the
present invention, sequencer 2150 only activates one appli-
cation engine at a time. In such an embodiment, application
engines 2156, 2158, and 2160 each receive a single bit of
enable output 2204—assertion of that bit indicates the receiv-
ing application engine is activated. In alternate embodiments,
multiple application engines are activated at the same time.

Sequencer 2150 also includes control interface 2206
coupled to application engines 2156, 2158, and 2160. Control
interface 2206 manages the exchange of data between
sequencer 2150 and application engines 2156, 2158, and
2160. Control interface 2206 supplies the following signals:
1) register read enable—enabling data and control registers
on the activated application engine to supply data on input
data interface 2202;

2) register write enable—enabling data and control registers
on the activated application engine to accept data on output
data interface 2200,

3) register address lines—providing addresses to application
engine registers in conjunction with the data and control
register enable signals; and

4) arbitrary control signals—providing unique interface sig-
nals for each application engine. The sequencer’s micro-code
programs the arbitrary control bits to operate difterently with
each application engine to satisty each engine’s unique inter-
face needs.

Once sequencer 2150 receives instruction from CPU 2060
to carry out an application, sequencer 2150 begins executing
the micro-code routine supporting that application. In some
instances, the micro-code instructions carry out the applica-
tion without using any application engines. In other instances,
the micro-code instructions cause sequencer 2150 to employ
one or more application engines to carry out an application.

When sequencer 2150 employs an application engine, the
micro-code instructions cause sequencer 2150 to issue an
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enable signal to the engine on enable interface 2204. Follow-
ing the enable signal, the micro-code directs sequencer 2150
to use control interface 2206 to initialize and direct the opera-
tion of the application engine. Sequencer 2150 provides con-
trol directions by writing the application engine’s control
registers and provides necessary data by writing the applica-
tion engine’s data registers. The micro-code also instructs
sequencer 2150 to retrieve application data from the applica-
tion engine. An example of the sequencer-application inter-
face will be presented below in the description of RxMAC
2170 and TXMAC 2160.

Sequencer 2150 also includes a streaming input (SI) engine
interface 2208 and streaming output (SO) engine interface
2212. These interfaces couple sequencer 2150 to streaming
input engine 2154 and streaming output engine 2162. The
operation of these interfaces will be explained in greater
detain below.

Streaming input data bus 2210 is coupled to sequencer
2150, streaming input engine 2154, and application engines
2156, 2158, and 2160. Streaming input engine 2154 drives
bus 2210 after retrieving data from memory. In one embodi-
ment, bus 2210 is 16 bytes wide. In one such embodiment,
sequencer 2150 is coupled to retrieve only 4 bytes of data bus
2210.

Streaming output bus 2211 is coupled to sequencer 2150,
streaming output engine 2162 and application engines 2156,
2158, and 2160. Application engines deliver data to streaming
output engine 2162 over streaming output bus 2211, so
streaming output engine 2162 can buffer the data to memory.
In one embodiment, bus 2211 is 16 bytes wide. In one such
embodiment, sequencer 2150 only drives 4 bytes on data bus
2211.

3. Streaming Input Engine

FIG. 27 shows streaming input engine 2154 in one embodi-
ment of the present invention. Streaming input engine 2154
retrieves data from memory in MPU 2010 at the direction of
sequencer 2150. Sequencer 2150 provides streaming input
engine 2154 with a start address and data size value for the
block of memory to be retrieved. Streaming input engine
2154 responds by retrieving the identified block of memory
and providing it on streaming data bus 2210 in coprocessor
2062. Streaming input engine 2154 provides data in program-
mable word sizes on bus 2210, in response to signals on SI
control interface 2208.

Fetch and pre-fetch engine 2226 provides instructions
(Memory Opcode) and addresses for retrieving data from
memory. Alignment circuit 2228 receives the addressed data
and converts the format of the data into the alignment desired
on streaming data bus 2210. In one embodiment, engine 2226
and alignment circuit 2228 are coupled to first tier data cache
2052 through arbiter 2176 (FIGS. 24a-24c).

Alignment circuit 2228 provides the realigned data to reg-
ister 2230, which forwards the data to data bus 2210. Mask
register 2232 provides a mask value identifying the output
bytes of register 2230 that are valid. In one embodiment, fetch
engine 2226 addresses 16 byte words in memory, and stream-
ing input engine 2154 can be programmed to provide words
with sizes of either: 0, 1, 2, 3,4, 5, 6, 7, 8, or 16 bytes.

Streaming input engine 2154 includes configuration regis-
ters 2220, 2222, and 2224 for receiving configuration data
from sequencer 2150. Registers 2220, 2222, and 2224 are
coupled to data signals on SI control interface 2208 to receive
a start address, data size, and mode identifier, respectively.
Registers 2220, 2222, and 2224 are also coupled to receive the
following control strobes from sequencer 2150 via SI control
interface 2208: 1) start address strobe—coupled to start
address register 2220; 2) data size strobe—coupled to data
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size register 2222; and 3) mode strobe—coupled to mode
register 2224. Registers 2220, 2222, and 2224 each capture
the data on output data interface 2200 when sequencer 2150
asserts their respective strobes.

In operation, fetch engine 2226 fetches the number of bytes
identified in data size register 2222, beginning at the start
address in register 2220. In one embodiment, fetch engine
2226 includes a pre-fetch operation to increase the efficiency
of memory fetches. Fetch engine 2226 issues pre-fetch
instructions prior to addressing memory. In response to the
pre-fetch instructions, MPU 2010 begins the process of map-
ping the memory block being accessed by fetch engine 2226
into data cache 2052 (See FIGS. 18 and 19).

In one embodiment, fetch engine 2226 calls for MPU 2010
to pre-fetch the first three 64 byte cache lines of the desired
memory block. Next, fetch engine 2226 issues load instruc-
tions for the first 64 byte cache line of the desired memory
block. Before each subsequent load instruction for the desired
memory block, fetch engine 2226 issues pre-fetch instruc-
tions for the two cache lines following the previously pre-
fetched lines. If the desired memory block is less than three
cache lines, fetch engine 2226 only issues pre-fetch instruc-
tions for the number of lines being sought. Ideally, the pre-
fetch operations will result in data being available in data
cache 2052 when fetch engine 2226 issues load instructions.

SI control interface 2208 includes the following additional
signals: 1) abort asserted by sequencer 2150 to halt a memory
retrieval operation; 2) start—asserted by sequencer 2150 to
begin a memory retrieval operations; 3) done—asserted by
streaming input engine 2154 when the streaming input engine
is drained of all valid data; 4) Data Valid asserted by stream-
ing input engine 2154 to indicate engine 2154 is providing
valid data on data bus 2210; 5) 16 Byte Size & Advance—
asserted by sequencer 2150 to call for a 16 byte data output on
data bus 210; and 6) 9 Byte Size & Advance—asserted by
sequencer 2150 to call for either 0, 1, 2,3, 4, 5, 6, 7, or 8 byte
data output on data bus 2210.

In one embodiment, alignment circuit 2228 includes buffer
2234, byte selector 2238, register 2236, and shifter 2240.
Buffer 2234 is coupled to receive 16 byte data words from
data cache 2052 through arbiter 2176. Buffer 2234 supplies
data words on its output in the order the data words were
received. Register 2236 is coupled to receive 16 byte data
words from buffer 2234. Register 2236 stores the data word
that resided on the output of buffer 2234 prior to the word
stored in register 2236.

Byte selector 2238 is coupled to receive the data word
stored in register 2236 and the data word on the output of
buffer 2234. Byte selector 2238 converts the 32 byte input
into a 24 byte output, which is coupled to shifter 2240. The 24
bytes follow the byte last provided to register 2230. Register
2236 loads the output of buffer 2234 and bufter 2234 outputs
the next 16 bytes, when the 24 bytes extends beyond the most
significant byte on the output of buffer 2234. Shifter 2240
shifts the 24 byte input, so the next set of bytes to be supplied
on data bus 2210 appear on the least significant bytes of the
output of shifter 2240. The output of shifter 2240 is coupled
to register 2230, which transfers the output of shifter 2240
onto data bus 2210.

Shifter 2240 is coupled to supply the contents of mask 2232
and receive the 9 Byte Size & Advance signal. The 9 Byte Size
& Advance signal indicates the number of bytes to provide in
register 2230 for transfer onto streaming data bus 2210. The 9
Byte Size & Advance signal covers a range of 0 to 8 bytes.
When the advance bit of the signal is deasserted, the entire
signal is ignored. Using the contents of the 9 Byte Size &
Advance signal, shifter 2240 properly aligns data in register
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2230 so the desired number of bytes for the next data transfer
appear in register 2230 starting at the least significant byte.

The 16 Byte Size & Advance signal is coupled to buffer
2234 and byte selector 2238 to indicate that a 16 byte transfer
is required on data bus 2210. In response to this signal, buffer
2234 immediately outputs the next 16 bytes, and register
2236 latches the bytes previously on the output of buffer
2234. When the advance bit of the signal is deasserted, the
entire signal is ignored.

In one embodiment, mode register 2224 stores two mode
bits. The first bit controls the assertion of the data valid signal.
If the first bit is set, streaming input engine 2154 asserts the
data valid signal once there is valid data in buffer 2234. If the
first bit is not set, streaming input engine 2154 waits until
buffer 2234 contains at least 32 valid bytes before asserting
data valid. The second bit controls the deassertion of the data
valid signal. When the second bit is set, engine 2154 deasserts
data valid when the last byte of data leaves buffer 2234.
Otherwise, engine 2154 deasserts data valid when buffer
2234 contains less than 16 valid data bytes.

4. Streaming Output Engine

FIG. 28 illustrates one embodiment of streaming output
engine 2162 in coprocessor 2062. Streaming output engine
2162 receives data from streaming data bus 2211 and stores
the data in memory in MPU 2010. Streaming data bus 2211
provides data to alignment block 2258 and mask signals to
mask register 2260. The mask signals identify the bytes on
streaming data bus 2211 that are valid. Alignment block 2258
arranges the incoming data into its proper positionina 16 byte
aligned data word. Alignment block 2258 is coupled to buffer
2256 to provide the properly aligned data.

Buffer 2256 maintains the resulting 16 byte data words
until they are written into memory over a data line output of
buffer 2256, which is coupled to data cache 2052 via arbiter
2176. Storage engine 2254 addresses memory in MPU 2010
and provides data storage opcodes over its address and
memory opcode outputs. The address and opcode outputs of
storage engine 2254 are coupled to data cache 2052 via arbiter
2176. In one embodiment, storage engine 2254 issues 16 byte
aligned data storage operations.

Streaming output buffer 2162 includes configuration reg-
isters 2250 and 2252. Registers 2250 and 2252 are coupled to
receive data from sequencer 2150 on data signals in SO con-
trol interface 2212. Register 2250 is coupled to a start address
strobe provided by sequencer 2150 on SO control interface
2212. Register 2250 latches the start address data presented
on interface 2212 when sequencer 2150 asserts the start
address strobe. Register 2252 is coupled to a mode address
strobe provided by sequencer 2150 on SO control bus 2212.
Register 2252 latches the mode data presented on interface
2212 when sequencer 2150 asserts the mode strobe.

In one embodiment, mode configuration register 2252 con-
tains 2 bits. A first bit controls a cache line burst mode. When
this bit is asserted, streaming output engine 2162 waits for a
full cache line word to accumulate in engine 2162 before
storing data to memory. When the first bit is not asserted,
streaming output engine 2162 waits for at least 16 bytes to
accumulate in engine 2162 before storing data to memory.

The second bit controls assertion of the store-create
instruction by coprocessor 2062. If the store-create mode bit
is not asserted, then coprocessor 2062 doesn’t assert the store-
create opcode. If the store-create bit is asserted, storage
engine 2254 issues the store-create opcode under the follow-
ing conditions: 1) If cache line burst mode is enabled, stream-
ing output engine 2162 is storing the first 16 bytes of'a cache
line, and engine 2162 has data for the entire cache line; and 2)
If cache line burst mode is not enabled, streaming output
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engine 2162 is storing the first 16 bytes of a cache line, and
engine 2162 has 16 bytes of data for the cache line.

SO control interface 2212 includes the following addi-
tional signals: 1) Done asserted by sequencer 2150 to instruct
streaming output engine 2162 that no more data is being
provided on data bus 2210; 2) Abort—provided by sequencer
2150 to instruct streaming output engine 2162 to flush buffer
2256 and cease issuing store opcodes; 3) Busy supplied by
streaming output engine 2162 to indicate there is data in
buffer 2256 to be transferred to memory; 4) Align Opcode &
Advance—supplied by sequencer 2150 to identify the num-
ber of bytes transferred in a single data transfer on data bus
2211. The align opcode can identify 4, 8 or 16 byte transfers
in one embodiment. When the advance bit is deasserted, the
align opcode is ignored by streaming output engine 2162; and
5) Stall supplied by streaming output engine 2162 to indicate
buffer 2256 is full. In response to receiving the Stall signal,
sequencer 2150 stalls data transfers to engine 2162.

Alignment block 2258 aligns incoming data from stream-
ing data bus 2211 in response to the alignment opcode and
start address register value. FIG. 29 shows internal circuitry
for buffer 2256 and alignment block 2258 in one embodiment
of'the invention. Buffer 2256 supplies a 16 byte aligned word
from register 2262 to memory on the output data line formed
by the outputs of register 2262. Buffer 2256 internally main-
tains 4 buffers, each storing 4 byte data words received from
alignment block 2256. Data buffer 2270 is coupled to output
word register 2262 to provide the least significant 4 bytes
(0-3). Data buffer 2268 is coupled to output word register
2262 to provide bytes 4-7. Data buffer 2266 is coupled to
output word register 2262 to provide bytes 8-11. Data buffer
2264 is coupled to output word register 2262 to provide the
most significant bytes (12-15).

Alignment block 2258 includes multiplexers 2272, 2274,
2276, and 2278 to route data from streaming data bus 2211 to
buffers 2264, 2266, 2268, and 2270. Data outputs from mul-
tiplexers 2272, 2274, 2276, and 2278 are coupled to provide
data to the inputs of buffers 2264, 2266, 2268, and 2270,
respectively. Each multiplexer includes four data inputs. Each
input is coupled to a different 4 byte segment of streaming
databus 2211. A first multiplexer data input receives bytes 0-3
of data bus 2211. A second multiplexer data input receives
bytes 4-7 of data bus 2211. A third multiplexer input receives
bytes 8-11 of data bus 2211. A fourth multiplexer data input
receives bytes 12-15 of data bus 2211.

Each multiplexer also includes a set of select signals,
which are driven by select logic 2280. Select logic 2280 sets
the select signals for multiplexers 2272, 2274, 2276, and
2278, based on the start address in register 2252 and the Align
Opcode & Advance Signal. Select logic 280 ensures that data
from streaming data bus 2211 is properly aligned in output
word register 2262.

For example, the start address may start at byte 4, and the
Align Opcode calls for 4 byte transfers on streaming data bus
2211. The first 12 bytes of data received from streaming data
bus 2211 must appear in bytes 4-15 of output register 2262.

When alignment block 2258 receives the first 4 byte trans-
fer on bytes 0-3 of bus 2211, select logic 2280 enables mul-
tiplexer 2276 to pass these bytes to buffer 2268. When align-
ment block 2258 receives the second 4 byte transfer, also
appearing on bytes 0-3 of bus 2211, select logic 2280 enables
multiplexer 2274 to pass bytes 0-3 to buffer 2266. When
alignment block 2258 receives the third 4 byte transfer, also
appearing on bytes 0-3 of bus 2211, select logic 2280 enables
multiplexer 2272 to pass bytes 0-3 to buffer 2264. As a result,
when buffer 2256 performs its 16 byte aligned store to
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memory, the twelve bytes received from data bus 2211 appear
in bytes 4-15 of the stored word.

In another example, the start address starts at byte 12, and
the Align Opcode calls for 8 byte transfers on streaming data
bus 2211. Alignment block 2258 receives the first 8 byte
transfer on bytes 0-7 of bus 2211. Select logic 2080 enables
multiplexer 2272 to pass bytes 0-3 of bus 2211 to buffer 2264
and enables multiplexer 2278 to pass bytes 4-7 of bus 2211 to
buffer 2270. Alignment block 2258 receives the second 8 byte
transfer on bytes 0-7 of bus 2211. Select logic 2080 enables
multiplexer 2276 to pass bytes 0-3 of bus 2211 to buffer 2268
and enables multiplexer 2274 to pass bytes 4-7 of bus 2211 to
buffer 2266. Register 2262 transfers the newly recorded 16
bytes to memory in 2 transfers. The first transfer presents the
least significant 4 bytes of the newly received 16 byte transfer
in bytes 12-15. The second transfer presents 12 bytes of the
newly received data on bytes 0-11.

One of ordinary skill will recognize that FIG. 29 only
shows one possible embodiment of buffer 2256 and align-
ment block 2258. Other embodiments are possible using well
known circuitry to achieve the above-described functionality.
5. RxXMAC and Packet Reception
a. RxMAC

FIG. 30 illustrates one embodiment of RxMAC 2170 in
accordance with the present invention. RxXMAC 2170
receives data from a network and forwards it to streaming
output engine 2162 for storing in MPU 2010 memory. The
combination of RXxMAC 2170 and streaming output engine
2162 enables MPU 2010 to directly write network data to
cache memory, without first being stored in main memory
2026.

RxMAC 2170 includes media access controller (“MAC”)
2290, buffer 2291, and sequencer interface 2292. In opera-
tion, MAC 290 is coupled to a communications medium
through a physical layer device (not shown) to receive net-
work data, such as data packets. MAC 2290 performs the
media access controller operations required by the network
protocol governing data transfers on the coupled communi-
cations medium. Example of MAC operations include: 1)
framing incoming data packets; 2) filtering incoming packets
based on destination addresses; 3) evaluating Frame Check
Sequence (“FCS”) checksums; and 4) detecting packet recep-
tion errors.

In one embodiment, MAC 2290 conforms to the IEEE
802.3 Standard for a communications network supporting
GMII Gigabit Ethernet. In one such embodiment, the MAC
2290 network interface includes the following signals from
the IEEE 802.37 Standard: 1) RXD—an input to MAC 2290
providing 8 bits of received data; 2) RX_DV—an input to
MAC 2290 indicating RXD is valid; 3) RX_ER—an input to
MAC 2290 indicating an error in RXD; and 4) RX_CLK—an
input to MAC 2290 providing a 125 MHz clock for timing
reference for RXD.

One of ordinary skill will recognize that in alternate
embodiments of the present invention MAC 2290 includes
interfaces to physical layer devices conforming to different
network standards. One such standard is the IEEE 802.3
standard for MII 100 megabit per second Ethernet.

In one embodiment of the invention, RXMAC 2170 also
receives and frames data packets from a point-to-point link
with a device that couples MPUs together. Two such devices
are cross-bar switch 3010 and cross-bar switch 3110
described below with reference to FIGS. 36-45. In one such
embodiment, the point-to-point link includes signaling that
conforms to the IEEE 802.3 Standard for GMII Gigabit Eth-
ernet MAC interface operation.
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MAC 2290 is coupled to buffer 2291 to provide framed
words (MAC Data) from received data packets. In one
embodiment, each word contains 8 bits, while in other
embodiments alternate size words can be employed. Buffer
2291 stores a predetermined number of framed words, then
transfers the words to streaming data bus 2211. Streaming
output engine 2162 stores the transferred data in memory, as
will be described below in greater detail. In one such embodi-
ment, buffer 2291 is a first-in-first-out (“FIFO”) buffer.

As listed above, MAC 2290 monitors incoming data pack-
ets for errors. In one embodiment, MAC 2290 provides indi-
cations of whether the following occurred for each packet: 1)
FCS error; 2) address mismatch; 3) size violation; 4) overflow
of buffer 2291; and 5) RX_ER signal asserted. In one such
embodiment, this information is stored in memory in MPU
2010, along with the associated data packet.

RxMAC 2170 communicates with sequencer 2150 through
sequencer interface 2292. Sequencer interface 2292 is
coupled to receive data on sequencer output data bus 2200 and
provide data on sequencer input data bus 2202. Sequencer
interface 2292 is coupled to receive a signal from enable
interface 2204 to inform RxMAC 2170 whether it is activated.

Sequencer 2150 programs RxXMAC 2170 for operation
through control registers (not shown) in sequencer interface
2292. Sequencer 2150 also retrieves control information
about RXMAC 2170 by querying registers in sequencer inter-
face 2292. Sequencer interface 2292 is coupled to MAC 2290
and buffer 2291 to provide and collect control register infor-
mation.

Control registers in sequencer interface 2292 are coupled
to sequencer input data bus 2202 and output data bus 2200.
The registers are also coupled to sequencer control bus 2206
to provide for addressing and controlling register store and
load operations. Sequencer 2150 writes one of the control
registers to define the mode of operation for RRMAC 2170. In
one mode, RXMAC 2170 is programmed for connection to a
communications network and in another mode RxMAC 2170
is programmed to the above-described point-to-point link to
another device. Sequencer 2150 employs another set of con-
trol registers to indicate the destination addresses for packets
that RxMAC 2170 is to accept.

Sequencer interface 2292 provides the following signals in
control registers that are accessed by sequencer 2150: 1) End
of’ Packet—indicating the last word for a packet has left buffer
2291; 2) Bundle Ready—indicating buffer 2291 has accumu-
lated a predetermined number of bytes for transfer on stream-
ing data bus 2210; 3) Abort indicating an error condition has
been detected, such as an address mismatch, FCS error, or
buffer overflow; and 4) Interrupt—indicating sequencer 2150
should execute an interrupt service routine, typically for
responding to MAC 2290 losing link to the communications
medium. Sequencer interface 2292 is coupled to MAC 2290
and buffer 2291 to receive the information necessary for
controlling the above-described signals.

Sequencer 2150 receives the above-identified signals in
response to control register reads that access control registers
containing the signals. In one embodiment, a single one bit
register provides all the control signals in response to a series
of register reads by sequencer 2150. In an alternate embodi-
ment, the control signals are provided on control interface
2206. Sequencer 2150 responds to the control signals by
executing operations that correspond to the signals—this will
be described in greater detail below. In one embodiment,
sequencer 2150 executes corresponding micro-code routines
in response to the signals. Once sequencer 2150 receives and
responds to one of the above-described signals, sequencer
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2150 performs a write operation to a control register in
sequencer interface 2292 to deassert the signal.
b. Packet Reception

FIG. 31 illustrates a process for receiving data packets
using coprocessor 2062 in one embodiment of the present
invention. CPU 2060 initializes sequencer 2152 for managing
packet receptions (step 300). CPU 2060 provides sequencer
2150 with addresses in MPU memory for coprocessor 2062 to
store data packets. One data storage scheme for use with the
present invention appears in detail below.

After being initialized by CPU 2060, sequencer 2152 ini-
tializes RxMAC 2170 (step 2301) and streaming output
engine 2172 (step 2302). CPU 2060 provides RxMAC 2170
with an operating mode for MAC 2290 and the destination
addresses for data packets to be received. CPU 2060 provides
streaming output engine 2172 with a start address and oper-
ating modes. The starting address is the memory location
where streaming output engine 2172 begins storing the next
incoming packet. In one embodiment, sequencer 2152 sets
the operating modes as follows: 1) the cache line burst mode
bit is not asserted; and 2) the store-create mode bit is asserted.
As described above, initializing streaming output engine
2172 causes it to begin memory store operations.

Once initialization is complete, sequencer 2152 deter-
mines whether data needs to be transferred out of RxMAC
2170 (step 2304). Sequencer 2152 monitors the bundle ready
signal to make this determination. Once RKMAC 2170 asserts
bundle ready, bytes from buffer 2291 in RXMAC 2170 are
transferred to streaming output engine 2172 (step 2306).

Upon detecting the bundle ready signal (step 2304),
sequencer 2152 issues a store opcode to streaming output
engine 2172. Streaming output engine 2172 responds by col-
lecting bytes from buffer 2291 on streaming data bus 2211
(step 2306). In one embodiment, buffer 2291 places 8 bytes of
data on the upper 8 bytes of streaming data bus 2211, and the
opcode causes engine 2172 to accept these bytes. Streaming
output engine 2172 operates as described above to transfer the
packet data to cache memory 2052 (step 2306).

Sequencer 2152 also resets the bundle ready signal (step
2308). Sequencer 2152 resets the bundle ready signal, so the
signal can be employed again once buffer 2291 accumulates
a sufficient number of bytes. Sequencer 2152 clears the
bundle ready signal by performing a store operation to a
control register in sequencer interface 2292 in RxMAC 2170.

Next, sequencer 2152 determines whether bytes remain to
be transferred out of RxMAC 2170 (step 2310). Sequencer
2152 makes this determination by monitoring the end of
packet signal from RxMAC 2170. If RxMAC 2170 has not
asserted the end of packet signal, sequencer 2152 begins
monitoring the bundle ready signal again (step 2304). If
RxMAC 2170 has asserted the end of packet signal (step
2310), sequencer 2152 issues the done signal to streaming
output engine 2172 (step 2314).

Once the done signal is issued, sequencer 2152 examines
the abort signal in RXMAC 2170 (step 2309). If the abort
signal is asserted, sequencer 2152 performs an abort opera-
tion (step 2313). After performing the abort operation,
sequencer 2152 examines the interrupt signal in RxMAC
2170 (step 2314). If the interrupt signal is set, sequencer 2152
executes a responsive interrupt service routine (“ISR”) (step
2317). After the ISR or if the interrupt is not set, sequencer
2152 returns to initialize the streaming output engine for
another reception (step 2302).

If the abort signal was not set (step 2309), sequencer 2152
waits for streaming output engine 2172 to deassert the busy
signal (step 2316). After sensing the busy signal is deasserted,
sequencer 2152 examines the interrupt signal in RxMAC
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2170 (step 2311). If the interrupt is asserted, sequencer 2152
performs a responsive ISR (step 2315). After the responsive
ISR or if the interrupt was not asserted, sequencer 2152
performs a descriptor operation (step 2318). As part of the
descriptor operation, sequencer 2152 retrieves status infor-
mation from sequencer interface 2292 in RXMAC 2170 and
writes the status to a descriptor field corresponding to the
received packet, as will be described below. Sequencer 2152
also determines the address for the next receive packet and
writes this value in a next address descriptor field. Once the
descriptor operation is complete, sequencer 2152 initializes
streaming output engine 2172 (step 2302) as described above.
This enables MPU 2010 to receive another packet into
memory.

FIG. 32 provides a logical representation of one data man-
agement scheme for use in embodiments ofthe present inven-
tion. During sequencer initialization (step 2300), the data
structure shown in FIG. 32 is established. The data structure
includes entries 2360, 2362, 2364, and 2366, which are
mapped into MPU 2010 memory. Each entry includes N
blocks of bytes. Sequencer 2152 maintains corresponding
ownership registers 2368, 2370, 2372, and 2374 for identify-
ing ownership of entries 2360, 2362, 2364, and 2366, respec-
tively.

In one embodiment, each entry includes 32 blocks, and
each block includes 512 bytes. In one such embodiment,
blocks 0 through N-1 are contiguous in memory and entries
2360, 2362, 2364, and 2366 are contiguous in memory.

Streaming output engine 2172 stores data received from
RxMAC 2170 in entries 2360, 2362, 2364, and 2366. CPU
2060 retrieves the received packets from these entries. As
described with reference to FIG. 31, sequencer 2152 instructs
streaming output engine 2172 where to store received data
(step 2302). Sequencer 2152 provides streaming input engine
2172 with a start address offset from the beginning of a block
in an entry owned by sequencer 2152. In one embodiment, the
offset includes the following fields: 1) Descriptor—for stor-
ing status information regarding the received packet; and 2)
Next Packet Pointer—for storing a pointer to the block that
holds the next packet. In some instances reserved bytes are
included after the Next Packet Pointer.

As described with reference to FIG. 31, sequencer 2152
performs a descriptor operation (step 2318) to write the
Descriptor and Next Packet Pointer fields. Sequencer 2152
identifies the Next Packet Pointer by counting the number of
bytes received by RxXMAC 2170. This is achieved in one
embodiment by counting the number of bundle ready signals
(step 2304) received for a packet. In one embodiment,
sequencer 152 ensures that the Next Packet Pointer points to
the first memory location in a block. Sequencer 2152 retrieves
information for the Descriptor field from sequencer interface
2292 in RXMAC 2170 (FIG. 30).

In one embodiment, the Descriptor field includes the fol-
lowing: 1) Frame Length—indicating the length of the
received packet; 2) Frame Done—indicating the packet has
been completed; 3) Broadcast Frame—indicating whether
the packet has a broadcast address; 4) Multicast Frame—
indicating whether the packet is a multicast packet supported
by RxMAC 2170; 5) Address Match—indicating whether an
address match occurred for the packet; 6) Frame Error—
indicating whether the packet had a reception error; and 7)
Frame Error Type—indicating the type of frame error, if any.
In other embodiments, additional and different status infor-
mation is included in the Descriptor field.

Streaming output engine 2172 stores incoming packet data
into as many contiguous blocks as necessary. If the entry
being used runs out of blocks, streaming output engine 2172
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buffers data into the first block of the next entry, provided
sequencer 2152 owns the entry. One exception to this opera-
tion is that streaming output engine 2172 will not split a
packet between entry 2366 and 2360.

In one embodiment, 256 bytes immediately following a
packet are left unused. In this embodiment, sequencer 2152
skips a block in assigning the next start address (step 2318 and
step 2302) if the last block of a packet has less than 256 bytes
unused.

After initialization (step 2300), sequencer 2152 possesses
ownership of entries 2360, 2362, 2364, and 2366. After
streaming output engine 2172 fills an entry, sequencer 2152
changes the value in the entry’s corresponding ownership
register to pass ownership of the entry to CPU 2060. Once
CPU 2060 retrieves the data in an entry, CPU 2060 writes the
entry’s corresponding ownership register to transfer entry
ownership to sequencer 2152. After entry 2366 is filled,
sequencer 2152 waits for ownership of entry 360 to be
returned before storing any more packets.

6. TXMAC and Packet Transmission
a. TxMAC

FIG. 33 illustrates one embodiment of TxMAC 2160 in
accordance with the present invention. TXMAC 2160 trans-
fers data from MPU 2010 to a network interface for transmis-
sion onto a communications medium. TkMAC 2160 operates
in conjunction with streaming input engine 2154 to directly
transfer data from cache memory to a network interface,
without first being stored in main memory 2026.

TxMAC 2160 includes media access controller (“MAC”)
2320, buffer 2322, and sequencer interface 2324. In opera-
tion, MAC 2320 is coupled to a communications medium
through a physical layer device (not shown) to transmit net-
work data, such as data packets. As with MAC 2290, MAC
2320 performs the media access controller operations
required by the network protocol governing data transfers on
the coupled communications medium. Example of MAC
transmit operations include, 1) serializing outgoing data
packets; 2) applying FCS checksums; and 3) detecting packet
transmission errors.

In one embodiment, MAC 2320 conforms to the IEEE
802.3 Standard for a communications network supporting
GMII Gigabit Ethernet. In one such embodiment, the MAC
3220 network interface includes the following signals from
the IEEE 802.3z Standard: 1) TXD—an output from MAC
2320 providing 8 bits of transmit data; 2) TX_EN—an output
from MAC 2320 indicating TXD has valid data; 3) TX_ER—
an output of MAC 2320 indicating a coding violation on data
received by MAC 2320; 4) COL—an input to MAC 2320
indicating there has been a collision on the coupled commu-
nications medium; 5) GTX_CLK—an output from MAC
2320 providing a 125 MHz clock timing reference for TXD;
and 6) TX_CLK—an output from MAC 2320 providing a
timing reference for TXD when the communications network
operates at 10 megabits per second or 100 megabits per sec-
ond.

One of ordinary skill will recognize that in alternate
embodiments of the present invention MAC 2320 includes
interfaces to physical layer devices conforming to different
network standards. In one such embodiment, MAC 2320
implements a network interface for the IEEE 802.3 standard
for MII 2100 megabit per second Ethernet.

In one embodiment of the invention, TXMAC 2160 also
transmits data packets to a point-to-point link with a device
that couples MPUs together, such as cross-bar switches 3010
and 3110 described below with reference to FIGS. 36-45. In
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one such embodiment, the point-to-point link includes sig-
naling that conforms to the GMII MAC interface specifica-
tion.

MAC 2320 is coupled to buffer 2322 to receive framed
words for data packets. In one embodiment, each word con-
tains 8 bits, while in other embodiments alternate size words
are employed. Buffer 2322 receives data words from stream-
ing data bus 2210. Streaming input engine 2154 retrieves the
packet data from memory, as will be described below in
greater detail. In one such embodiment, buffer 2322 is a
first-in-first-out (“FIFO”) butfer.

As explained above, MAC 2320 monitors outgoing data
packet transmissions for errors. In one embodiment, MAC
2320 provides indications of whether the following occurred
for each packet: 1) collisions; 2) excessive collisions; and 3)
underflow of buffer 2322.

TxMAC 2160 communicates with sequencer 2150 through
sequencer interface 2324. Sequencer interface 2324 is
coupled to receive data on sequencer output bus 2200 and
provide data on sequencer input bus 2202. Sequencer inter-
face 2324 is coupled to receive a signal from enable interface
2204 to inform TxMAC 2160 whether it is activated.

Sequencer 2150 programs TxMAC 2160 for operation
through control registers (not shown) in sequencer interface
2324. Sequencer 2150 also retrieves control information
about TxMAC 2160 by querying these same registers.
Sequencer interface 2324 is coupled to MAC 2320 and buffer
2322 to provide and collect control register information.

The control registers in sequencer interface 2324 are
coupled to input data bus 2202 and output data bus 2200. The
registers are also coupled to control interface 2206 to provide
for addressing and controlling register store and load opera-
tions. Sequencer 2150 writes one of the control registers to
define the mode of operation for TKMAC 2160. In one mode,
TxMAC 2160 is programmed for connection to a communi-
cations network and in another mode TxMAC 2160 is pro-
grammed to the above-described point-to-point link to
another device. Sequencer 2150 employs a register in
TxMAC’s set of control registers to indicate the number of
bytes in the packet TxMAC 2160 is sending.

Sequencer interface 2324 provides the following signals to
sequencer control interface 2206: 1) Retry—indicating a
packet was not properly transmitted and will need to be
resent; 2) Packet Done—indicating the packet being trans-
mitted has left MAC 2320; and 3) Back-off—indicating a
device connecting MPUs in the above-described point-to-
point mode cannot receive a data packet at this time and the
packet should be transmitted later.

Sequencer 2150 receives the above-identified signals and
responds by executing operations that correspond to the sig-
nals—this will be described in greater detail below. In one
embodiment, sequencer 2150 executes corresponding micro-
code routines in response to the signals. Once sequencer 2150
receives and responds to one of the above-described signals,
sequencer 2150 performs a write operation to a control reg-
ister in sequencer interface 2320 to deassert the signal.

Sequencer 2324 receives an Abort signal from sequencer
control interface 2206. The Abort signal indicates that exces-
sive retries have been made in transmitting a data packet and
to make no further attempts to transmit the packet. Sequencer
interface 2324 is coupled to MAC 2320 and buffer 2322 to
receive information necessary for controlling the above-de-
scribed signals and forwarding instructions from sequencer
2150.

In one embodiment, sequencer interface 2324 also pro-
vides the 9 Byte Size Advance signal to streaming input
engine 2154.
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b. Packet Transmission

FIG. 34 illustrates a process MPU 2010 employs in one
embodiment of the present invention to transmit packets. At
the outset, CPU 2060 initializes sequencer 2150 (step 2330).
CPU 2060 instructs sequencer 2150 to transmit a packet and
provides sequencer 2150 with the packet’s size and address in
memory. Next, sequencer 2150 initializes TkMAC 2160 (step
2332) and streaming input engine 2154 (step 2334).

Sequencer 2150 writes to control registers in sequencer
interface 2324 to set the mode of operation and size for the
packet to be transmitted. Sequencer 2150 provides the
memory start address, data size, and mode bits to streaming
input engine 2154. Sequencer 2150 also issues the Start signal
to streaming input engine 2154 (step 2336), which results in
streaming input engine 2154 beginning to fetch packet data
from data cache 2052.

Sequencer 2150 and streaming input engine 2154 combine
to transfer packet data to TxMAC 2160 (step 2338). TxMAC
160 supplies the 9 Byte Size Signal to transfer data one byte
at a time from streaming input engine 2154 to buffer 2322
over streaming data bus 2210. Upon receiving these bytes,
buffer 2322 begins forwarding the bytes to MAC 2320, which
serializes the bytes and transmits them to a network interface
(step 2340). As part of the transmission process, TXMAC
2160 decrements the packet count provided by sequencer
2150 when a byte is transferred to buffer 2322 from streaming
input engine 2154. In an alternate embodiment, sequencer
150 provides the 9 Byte Size Signal.

During the transmission process, MAC 2320 ensures that
MAC level operations are performed in accordance with
appropriate network protocols, including collision handling.
If a collision does occur, TXMAC 2320 asserts the Retry
signal and the transmission process restarts with the initial-
ization of TXMAC 2160 (step 2332) and streaming input
engine 2154 (step 2334).

While TxMAC 2160 is transmitting, sequencer 2150 waits
for TXMAC 2160 to complete transmission (step 2342). In
one embodiment, sequencer 2150 monitors the Packet Done
signal from TxMAC 2160 to determine when transmission is
complete. Sequencer 2150 can perform this monitoring by
polling the Packet Done signal or coupling it to an interrupt
input.

Once Packet Done is asserted, sequencer 2150 invalidates
the memory location where the packet data was stored (step
2346). This alleviates the need for MPU 2010 to update main
memory when reassigning the cache location that stored the
transmitted packet. In one embodiment, sequencer 2150
invalidates the cache location by issuing a line invalidation
instruction to data cache 2052.

After invalidating the transmit packet’s memory location,
sequencer 2150 can transmit another packet. Sequencer 2150
initializes TxXMAC 2160 (step 2332) and streaming input
engine 2154 (step 2334) and the above-described transmis-
sion process is repeated.

In one embodiment of the invention, the transmit process
employs a bandwidth allocation procedure for enhancing
quality of service. Bandwidth allocation allows packets to be
assigned priority levels having a corresponding amount of
allocated bandwidth. In one such embodiment, when a class
exhausts its allocated bandwidth no further transmissions
may be made from that class until all classes exhaust their
bandwidth—unless the exhausted class is the only class with
packets awaiting transmission.

Implementing such an embodiment can be achieved by
making the following additions to the process described in
FIG. 34, as shown in FIG. 35. When CPU 2060 initializes
sequencer 2150 (step 2330), CPU 2060 assigns the packet to
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a bandwidth class. Sequencer 2150 determines whether there
is bandwidth available to transmit a packet with the assigned
class (step 2331). If not, sequencer 2150 informs CPU 2060 to
select a packet from another class because the packet’s band-
width class is oversubscribed. The packet with the oversub-
scribed bandwidth class is selected at a later time (step 2350).
If bandwidth is available for the assigned class, sequencer
2150 continues the transmission process described for FIG.
34 by initializing TXxMAC 2160 and streaming input engine
2154. After transmission is complete sequencer 2150 decre-
ments an available bandwidth allocation counter for the trans-
mitted packet’s class (step 2345).

In one embodiment, MPU 2010 employs 4 bandwidth
classes, having initial bandwidth allocation counts of 128, 64,
32, and 16. Each count is decremented by the number of 16
byte segments in a transmitted packet from the class (step
2345). When a count reaches or falls below zero, no further
packets with the corresponding class are transmitted—unless
no other class with a positive count is attempting to transmit
apacket. Once all the counts reach zero or all classes attempt-
ing to transmit reach zero, sequencer 2150 resets the band-
width allocation counts to their initial count values.

E. Connecting Multiple MPU Engines

In one embodiment of the invention, MPU 2010 can be
connected to another MPU using TxXMAC 2160 or RxMAC
2170. As described above, in one such embodiment, TXMAC
2160 and RxMAC 2170 have modes of operation supporting
a point-to-point link with a cross-bar switch designed to
couple MPUs. Two such cross-bar switches are cross-bar
switch 3010 and cross-bar switch 3110 disclosed below with
reference to FIGS. 36-45. In alternate embodiments, RxMAC
2170 and TxMAC 2160 support interconnection with other
MPUs through bus interfaces and other well know linking
schemes.

In one point-to-point linking embodiment, the network
interfaces of TXMAC 2160 and RxMAC 2170 are modified to
take advantage of the fact that packet collisions don’t occur on
apoint-to-point interface. Signals specified by the applicable
network protocol for collision, such as those found in the
IEEE 802.3 Specification, are replaced with a hold-off signal.

In such an embodiment, RxMAC 2170 includes a hold-off
signal that RxMAC 2170 issues to the interconnect device to
indicate RXMAC 2170 cannot receive more packets. In
response, the interconnect device will not transmit any more
packets after the current packet, until hold-oft is deasserted.
Other than this modification, RkMAC 2170 operates the same
as described above for interfacing to a network.

Similarly, TxMAC 2160 includes a hold-off signal input in
one embodiment. When TxMAC 2160 receives the hold-off
signal from the interconnect device, TXMAC halts packet
transmission and issues the Back-off signal to sequencer
2150. In response, sequencer 2150 attempts to transmit the
packet at a later time. Other than this modification, TxMAC
2160 operates the same as described above for interfacing to
a network.

II1. Cross Bar Switch
A. System Employing a Cross-Bar Switch

FIG. 36 illustrates a system employing cross-bar switches
3010, 3012, and 3014, which operate in accordance with the
present invention. Cross-bar switch 3010 is coupled to trans-
fer packets between cross-bar switch 3012 and data terminal
equipment (“DTE”) 3020, 3022, 3030 and 3032. Cross-bar
switch 3012 is coupled to transfer packets between cross-bar
switches 3010 and 3014 and DTE 3024, 3026, and 3034.
Cross-bar switch 3014 is coupled to transfer packets between
cross-bar switch 3012 and DTE 3028, 3036, and 3038. In one
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embodiment of the present invention, switch elements 200 in
FIG. 4 are cross-bar switches 3010.

DTE is a generic name for a computing system including a
processing engine, ranging from a complex multi-processor
computer system to a stand-alone processing engine. At least
one example of a DTE is multi-processor unit 2010 described
above with reference to FIGS. 16-25.

In one embodiment, all of the elements appearing in FIG.
36 reside in the same system and are coupled together by
intra-system communications links. Alternatively, the ele-
ments in FIG. 36 are located in separate systems and coupled
together over a communications network. An example of one
such communications network is a network conforming to the
Institute of Electrical and Electronic Engineers (“IEEE”)
802.3 Standard employing GMII Gigabit Ethernet signaling.
Intra-system communications links employing such signal-
ing standards can also be employed.

B. Cross-Bar Switch

FIG. 37 depicts circuitry for one embodiment of cross-bar
switch 3010 in accordance with the present invention.
Although explained in detail below with reference to cross-
bar switch 3010, the circuitry shown in FIG. 37 is also appli-
cable to cross-bar switches 3012 and 3014 in FIG. 36. In one
embodiment, cross-bar switch 3010 is implemented in an
integrated circuit. Alternatively, cross-bar switch 3010 is not
implemented in an integrated circuit.

Cross-bar switch 3010 includes input ports 3040, 3042,
3044, 3046, 3048, and 3050 for receiving data packets on
communications links 3074, 3076, 3078, 3080, 3082, and
3084, respectively. Each communications link 3074, 3076,
3078,3080,3082, and 3084 is designed for coupling to a data
source, such as a DTE or cross-bar device, and supports
protocol and signaling for transferring packets. One such
protocol and signaling standard is the IEEE 802.3 Standard
for a communications network supporting GMII Gigabit Eth-
ernet.

Each input port is coupled to another input port via data
ring 3060. Data ring 3060 is formed by data ring segments
3060,-3060,, which each couple one input port to another
input port. Segment 3060, couples input port 3050 to input
port 3040. Segment 3060, couples input port 3040 to input
port 3042. Segment 3060, couples input port 3042 to input
port 3044. Segment 3060, couples input port 3044 to input
port 3046. Segment 30605 couples input port 3046 to input
port 3048. Segment 3060, couples input port 3048 to input
port 3050, completing data ring 3060.

When an input port receives a data packet on a communi-
cations link, the input port forwards the data packet to another
input port via the data ring segment coupling the input ports.
For example, input port 3040 forwards data received on com-
munications link 3074 to input port 3042 via ring segment
3060,. Input port 3042 forwards data received on communi-
cations link 3076 to input port 3044 via ring segment 3060 .
Input port 3044 forwards data received on communications
link 3078 to input port 3046 via ring segment 3060,. Input
port 3046 forwards data received on communications link
3080 to input port 3048 via ring segment 30605. Input port
3048 forwards data received on communications link 3082 to
input port 3050 via ring segment 3060,. Input port 3050
forwards data received on communications link 3084 to input
port 3040 via ring segment 3060, .

Input ports also forward data received on a data ring seg-
ment to another input port. For example, input port 3040
forwards data received on ring segment 3060, to input port
3042 via ring segment 3060,. Input port 3042 forwards data
received on ring segment 3060, to input port 3044 via ring
segment 3060;. Input port 3044 forwards data received on
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ring segment 3060, to input port 3046 via ring segment
3060,. Input port 3046 forwards data received on ring seg-
ment 3060, to input port 3048 via ring segment 3060.. Input
port 3048 forwards data received on ring segment 3060, to
input port 3050 via ring segment 3060,. Input port 3050
forwards data received on ring segment 3060, to input port
3040 via ring segment 3060, .

Cross-bar switch 3010 also includes data rings 3062 and
3064. Although not shown in detail, data rings 3062 and 3064
are the same as data ring 3060, each coupling input ports (not
shown) together via ring segments. In some embodiments,
however, data rings 3060, 3062, and 3064 include different
numbers of segments supporting different numbers of input
ports.

Cross-bar 3010 includes sink ports 3052, 3054, 3055,
3056, 3057, and 3058 for transmitting data packets onto com-
munications links 3066, 3068, 3069, 3070, 3071, and 3072,
respectively. Sink ports 3052, 3054, 3055, 3056, 3057, and
3058 are each coupled to data rings 3060, 3062, and 3064 to
receive data that input ports supply to rings 3060, 3062, and
3064. Sink ports 3052, 3054, 3055, 3056, 3057, and 3058
snoop data on data rings 3060, 3062, and 3064 to determine
whether the data is targeted for a device coupled to the sink
port’s communication link, such as a DTE or cross-bar
switch. Each communications link 3066, 3068, 3069, 3070,
3071, and 3072 is designed for coupling to a data target, such
as a DTE or cross-bar device, and supports protocol and
signaling for transferring packets. One such protocol and
signaling standard is the IEEE 802.3 Standard for a commu-
nications network supporting GMII Gigabit Ethernet.

Sink ports 3052, 3054, 3055, 3056, 3057, and 3058 are
each capable of supporting data transfers to multiple target
addresses on their respective communications links allowing
cross-bar switch 3010 to implicitly support multicast address-
ing. Sink ports 3052, 3054, 3055, 3056, 3057, and 3058 are
each capable of simultaneously receiving multiple data pack-
ets from rings 3060, 3062, and 3064 and transferring the data
to the identified targets allowing cross-bar switch 3010 to be
non-blocking when multiple input ports receive data packets
destined for the same target. This functionality provides
advantages over traditional cross-bar switches, which only
support one target address per output port and one packet at a
time for a target.

FIG. 38 depicts a flow diagram illustrating a series of steps
performed by cross-bar switch 3010. A user configures cross-
bar switch 3010 for operation (step 3090). In operation, the
input ports in cross-bar switch 3010 receive packets on their
respective communications links (step 3092). The input ports
provide the packets to the sink ports in cross-bar switch 3010.
In cross-bar switch 3010 in FIG. 37, the input ports forward
the packet data to either data ring 3060, 3062, or 3064 for
retrieval by the sink ports (step 3094).

Each sink port performs a snooping and collection pro-
cess—identifying and storing packets addressed to targets
supported by the sink port (step 3096). Each sink port snoops
the packet data on rings 3060, 3062, and 3064 to determine
whether to accept the data (step 3098). If a sink port detects
that a packet fails to meet acceptance criteria, then the sink
port does not accept the packet. If a sink port determines that
a packet meets acceptance criteria, then the sink port collects
the packet data from ring 3060, 3062, or 3064 (step 3100).
Cross-bar switch 3010 transmits packets collected in the sink
ports to targeted destinations via the sink ports’ respective
communication links (step 3102). Further details regarding
sink port operation appear below, including the acceptance
and collection of packets.
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In configuration (step 3090), a user sends configuration
packets to at least one input port in cross-bar switch 3010 for
delivery to a designated sink port. Configuration packets
include configuration settings and instructions for configur-
ing the targeted sink port. For example, input port 3040 for-
wards a configuration packet to data ring 3060 targeted for
sink port 3052. Sink port 3052 retrieves the configuration
packet from ring 3060 and performs a configuration operation
in response to the configuration packet. In some instances, a
designated sink port responds to a configuration packet by
sending a response packet, including status information.
Alternatively, the designated sink port responds to the con-
figuration packet by writing configuration data into internal
control registers.

Table I below shows a sink port configuration and status
register structure in one embodiment of the present invention.

TABLE I
Sink Port Configuration and Status Register Structure
P
Port Address Table [31:0]
Port Address Table [63:32]
Port Address Table [95:64]
Port Address Table [127:96]
R

Retry Time [15:0]

FIFO Thresholds/Priority Weighting Values [23:0]
Total Packet Count
Configuration Packet Count
Port Enable Rejection Count
Packet Size Rejection Count
Bandwidth Allocation Rejection Count
Sink Overload Rejection Count

The sink port registers provide the following configuration
settings: 1) Port Enable (“P”)—set to enable the sink port and
deasserted to disable the sink port; 2) Port Address Table
[127:0]—set bits identify the destination addresses associ-
ated with the sink port. For example, when bits 64, 87, and
123 are set, the sink port accepts data packets with those
destination addresses; 3) Retry Mode (“R”)—set to enable
retry operation for the sink port and deasserted to disable retry
operation (further details regarding retry operation appear
below); 4) Retry Time [15:0]—set to indicate the period of
time allowed for retrying a packet transmission; and 5) FIFO
Thresholds and Priority Weighting Values [23:0]—set to
identify FIFO thresholds and priority weighting values
employed in bandwidth allocation management, which is
described in detail below.

The sink port register block also maintains the following
status registers: 1) Total Packet Count—indicating the num-
ber of non-configuration packets accepted by the sink port
from data rings 3060, 3062, and 3064; 2) Configuration
Packet Count—indicating the number of configuration pack-
ets received by cross-bar switch 3010; 3) Port Enable Rejec-
tion Count—indicating the number of packets having a des-
tination address supported by the sink port, but rejected due to
the sink port being disabled; 4) Packet Size Reject Count—
indicating the number of packets rejected by the sink port
because not enough storage room existed for them in the sink
port; 5) Bandwidth Allocation Rejection Count—indicating
the number of packets rejected by the sink port for bandwidth
allocation reasons; 6) Sink Overload Rejection Count—indi-
cating the number of packets rejected by the sink port because
the sink port was already receiving a maximum allowable
number of packets.

FIG. 39 shows cross-bar switch 3110—an alternate version
of cross-bar switch 3010, providing explicit support for mul-
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ticast packets. In cross-bar switch 3110, the elements with the
same reference numbers appearing in cross-bar switch 3010
operate as described for cross-bar switch 3010 with any addi-
tional functionality being specified below. Cross-bar switch
3110 includes multi-sink port 3112, which is coupled to sink
ports 3052, 3054, 3055, 3056, 3057, and 3058 by interface
3114. Multi-sink port 3112 is also coupled to data rings 3060,
3062, and 3064. In one embodiment of the present invention,
switching elements 200 in FIG. 4 are cross-bar switches
3110.

In operation, multi-sink port 3112 snoops data on rings
3060, 3062, and 3064. Multi-sink port 3112 accepts multicast
packets that have destination addresses included within a set
of addresses supported by multi-sink port 3112. Multi-sink
port 3112 forwards accepted packets over interface 3114 to
sink ports in cross-bar switch 3110 that have communication
links leading to at least one of the addressed destinations. The
sink ports then transfer the packets to their intended destina-
tions. Greater details regarding the operation of multi-sink
port 3112 appear below.

Like sink ports 3052, 3054, 3055, 3056, 3057, and 3058,
multi-sink port 3112 also maintains a set of configuration and
status registers. Table II below shows a register structure for
multi-sink port 3112 in one embodiment of the present inven-
tion.

TABLE I

Multi-Sink Port Configuration and Status Register Structure

T
Port Address Table [31:0]
Port Address Table [63:32]
Port Address Table [95:64]
Port Address Table [127:96]
FIFO Thresholds/Priority Weighting Values [23:0]
Total Packet Count
Configuration Packet count
Port Enable Rejection Count
Packet Size Rejection Count
Bandwidth Allocation Rejection Count
Sink Overload Rejection Count
Multicast Register 0 [19:0]

Multicast Register 63 [19:0]

The multi-sink port registers with the same name as sink
port registers perform the same function. The multi-sink port
register block includes the following additional registers: 1)
Multicast Timeout Select (“T”’)—set to indicate the maxi-
mum timeout for multicast packets. In one embodiment the
maximum timeout is either 1,600 or 9,000 internal clock
cycles of cross-bar switch 3110; and 2) Multicast Registers
0-63—ecach identifying a set of sink ports to be targeted in
response to a multicast destination address.

In one embodiment, cross-bar 3110 includes 20 sink ports
and each Multicast Register contains 20 corresponding bits.
Each set bit indicates that the corresponding sink port is
targeted to receive packets with destination addresses corre-
sponding to the Multicast Resister’s address. Multi-sink port
3112 accepts all packets with destination addresses selected
in the Port Address Table and maps the last 6 bits of the
destination address to a Multicast Register (See Table II).
Further details about the operation of multi-sink port 3112
appear below.

The above-described implementations of cross-bar
switches 3010 and 3110 are only two examples of cross-bar
switches in accordance with the present invention. Many
possible variations fall within the scope of the present inven-
tion. For example, in one embodiment of the present inven-
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tion, rings 3060, 3062, and 3064 are each capable of linking
8 input ports together and have connections to 24 sink ports.
In one such embodiment, cross-bar switch 3010 in FIG. 37
and cross-bar switch 3110 in FIG. 39 each include 20 input
ports and 20 sink ports—Ileaving 4 input port slots unused and
4 sink port slots unused. In this embodiment, each sink port
supports up to 128 target addresses and can simultaneously
accept up to 7 data packets—6 from input ports and 1 from
multi-sink port 3112. In alternate embodiments, there is no
limit on the number of data packets simultaneously accepted
by a sink port.

C. Data Rings

Rings 3060, 3062, and 3064 (FIGS. 37 and 49) include a
data field and a control field. In one embodiment of the
present invention, the data field is 8 bytes wide and the control
field includes the following signals: 1) Data Valid—indicat-
ing whether the data field contains valid data; 2) Valid
Bytes—indicating the number of valid bytes in the data field;
3) First Line—indicating whether the data field contains the
first line of data from the packet supplied by the input port; 4)
Last Line—indicating whether the data field contains the last
line of data from the packet supplied by the input port; and 5)
Source—identifying the input port supplying the packet data
carried in the data field.

One with ordinary skill will recognize that different control
signals and different data field widths can be employed in
alternate embodiments of the present invention.

D. Packet Formats

Cross-bar switches 3010 and 3110 support the following 3
types of packets: 1) Data Packets; 2) Configuration Packets;
and 3) Read Configuration Response Packets.

1. Data Packets

Cross-bar switches 3010 and 3110 employ data packets to
transfer non-configuration information. Table III below illus-
trates the format of a data packet in one embodiment of the
present invention.

TABLE III
Data Packet Format
0 Destination Address
1 Size [7:0]
2 Priority Level Size [13:8]
3
4
5
6
7
8-end Payload

A data packet includes a payload and header. The header
appears in the data packet’s first 8 bytes (Bytes 0-7). The
payload immediately follows the header. In one embodiment,
the payload is a packet that complies with the IEEE 802.3
Standard for a data packet, except the preamble field is
excluded. In one such embodiment, legal packet sizes range
from 64 bytes to 9,216 bytes.

The header includes the following fields: 1) Destination
Address—identifying the data packet’s targeted destination;
2) Size [13:0]—providing the data packet’s size in bytes; 3)
Priority Level—providing a priority level for the data packet
that is used in bandwidth allocation management. The
remaining portion of the header is reserved.

In one embodiment, cross-bar switches 3010 and 3110
perform error checking to ensure that an incoming packet
contains the number of bytes indicated in the packet’s Size
field. If there is an error, the packet will be flagged with an
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error upon subsequent transmission. In one such embodi-
ment, input ports perform the size check and pass error infor-
mation on to the sink ports.
2. Configuration Packets

Configuration packets carry configuration instructions and
settings for cross-bar switches 3010 and 3110. Table IV
below shows the format of a configuration packet in one
embodiment of the present invention.

TABLE IV

Configuration Packet Format

0 Configuration Identifier

1

2 Cross-Bar Switch Identifier

8 Command

9 Configuration Register Address (“CRA”) [7:0]
10 Port Identifier CRA [10:8]

16-63 Data

The configuration packet is 64 bytes long, allowing the
entire packetto fit on either dataring 3060, 3062, or 3064. The
configuration packet includes the following fields: 1) Con-
figuration Identifier—identifying the packet as a configura-
tion packet. In one embodiment, this field is set to a value of
127; 2) Cross-Bar Switch Identifier—identifying the cross-
bar switch for which the configuration packet is targeted; 3)
Command—identifying the configuration operation to be
performed in response to the packet; 4) Port Identifier—
identifying a sink port or multi-sink port in the identified
cross-bar switch; 5) Configuration Register Address (“CRA”)
[10:0]—identifying a configuration register in the identified
sink port or multi-sink port; 6) Data—containing data used in
the configuration operation. Remaining fields in the configu-
ration packet are reserved.

A configuration packet containing a write command causes
the identified cross-bar switch to write configuration data into
to the identified configuration register in the identified sink
port. In a write command configuration packet, the Data field
contains a value for the sink port to write into the identified
configuration register. In one embodiment, this value can be
up to 4 bytes long.

A configuration packet containing a read command causes
the identified cross-bar switch to send a response packet
containing the values of registers in the identified sink port. In
aread command configuration packet, the Data field contains
a header to be used by a read configuration response packet.

In one embodiment the header is 16 bytes, as shown below
in the description of the read configuration response packets.
This header is user programmable and set to any value desired
by the entity issuing the read command configuration packet.
3. Read Configuration Response Packets

Read configuration response packets carry responses to
read commands issued in configuration packets. Multi-sink
port 3112 and sink ports 3052, 3054, 3055, 3056, 3057, and
3058 supply read configuration response packets on their
communications links. Table V below shows the format of a
sink port’s read configuration response packet.

TABLEV

Sink Port Read Configuration Response Packet Format

0  Header [31:0]
1 Header [63:32]
2 Header [95:64]
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TABLE V-continued

Sink Port Read Configuration Response Packet Format

3 Header [127:96]
4 Priority Weighting

FIFO Thresholds [11:0] R P
Values [11:0]
5 Retry Time
6 Port Address Table [31:0]
7 Port Address Table [63:32]
8 Port Address Table [95:64]
9 Port Address Table [127:96]

Total Packet Count

Configuration Packet Count

Port Enable Rejection Count

Packet Size Rejection Count
Bandwidth Allocation Rejection Count
Sink Overload Rejection Count

Header [127:0] is the header provided in the read command
configuration packet. The remaining fields of the read con-
figuration response packet provide the data held in the above-
described sink port registers with corresponding names (See
Table I).

Table VI below shows the format of a multi-sink port’s read
configuration response packet.

TABLE VI

Multi-Sink Port Read Configuration Response Packet Format

0 Header [31:0]

1 Header [63:32]

2 Header [95:64]

3 Header [127:96]

4 Priority Weighting
Values [11:0]

FIFO Thresholds [11:0] T

5 Multicast Register [19:0]
6 Port Address Table

7 Port Address Table

8 Port Address Table

9 Port Address Table
Total Packet Count
Configuration Packet Count

Port Enable Rejection Count

Packet Size Rejection Count
Bandwidth Allocation Rejection Count
Sink Overload Rejection Count

31:0]
63:32]
95:64]
127:96]

Header [127:0] is the header provided in the read command
configuration packet. The Multicast Register field contains
the contents of the multi-sink port’s Multicast Register that
corresponds to the configuration packet’s Configuration Reg-
ister Address field. The remaining fields of the read configu-
ration response packet provide the data held in the above-
described multi-sink port registers with corresponding names
(See Table II).

E. Input Ports

FIG. 40 shows a block diagram of input port 3040. FIG. 40
is also applicable to input ports 3042, 3044, 3046, 3048, and
3050.

Input port 3040 includes communications interface 3120
coupled to receive data from communications link 3074.
Communication interface 3120 is coupled to provide the
received data to FIFO 3122, so the data becomes synchro-
nized with the cross-bar switch’s internal clock. In one ver-
sion of input port 3040, FIFO 3122 holds 32 bytes.

FIFO 3122 is coupled to provide the received data to ring
interface 3124, which is coupled to data ring 3060. Ring
interface 3124 is also coupled to receive data from data ring
segment 3060, . Ring interface 3124 forwards data onto ring
3060 via data ring segment 3060,. In addition to providing
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data, ring interface 3124 also generates and provides the
above-described data ring control information on ring seg-
ment 3060,.

Data is forwarded on ring 3060 in time slots. Input port
3040 is allotted a time slot on ring 3060 for forwarding data
from communications link 3074 onto ring segment 3060,. In
each remaining time slot, input port 3040 forwards data from
ring segment 3060, onto segment 3060,. In one embodiment,
all input ports coupled to ring 3060 place communications
link data onto ring 3060 in the same time slot. When ring
interface 3124 receives data on segment 3060, that originated
from sink port 3040, ring interface 3124 terminates any fur-
ther propagation of this data on ring 3060. In one embodi-
ment, sink port 3040 recognizes the arrival of data originating
from sink port 3040 by counting the number of time slots that
elapse after placing data from link 3074 onto any segment
3060,—sink port 3040 knows the number of time slots
required for data placed on ring 3060 by port 3040 to propa-
gate around ring 3060 back to port 3040.

In one embodiment, the interface between communica-
tions interface 3120 and communications link 3074 includes
the following signals: 1) RXD—an input to input port 3040
providing 8 bits of received data; 2) RX_EN—an input to
input port 3040 indicating RXD is valid; 3) RX_ER—an
input to input port 3040 indicating an error in RXD; 4) COL
an output from input port 3040 indicating that the cross-bar
switch cannot accept the incoming data on RXD; and 5)
RX_CLK—an input to input port 3040 providing a 125 MHz
clock for timing reference for RXD.

In one embodiment of the present invention, the above-
described signals conform to the reception signals in the
IEEE 802.3 Standard for GMII Gigabit Ethernet. In one such
embodiment, RX_CLK is the same frequency as the internal
clock of cross-bar switch 3010 within 100 parts per million.

One of ordinary skill will recognize that in alternate
embodiments of the present invention communications inter-
face 3120 interfaces to devices conforming to different net-
work standards than described above.

F. Sink Ports

FIG. 41 depicts one version of sink port 3052 that is also
applicable to sink ports 3054, 3055, 3056, 3057, and 3058.
Sink port 3052 includes ring interface 3132 coupled to
receive data from data rings 3060, 3062, and 3064. Ring
interface 3132 accepts data packets targeted for sink port
3052. Ring interface 3132 also accepts configuration packets
addressed to cross-bar switches other than the one containing
ring interface 3132 these configuration packets are treated as
data packets. Further details regarding data acceptance is
presented below.

Ring interface 3132 is coupled to FIFOs 3136, 3138, and
3140 to provide immediate storage for data retrieved from
rings 3060, 3062, and 3064. FIFOs 3136, 3138, and 3140
each store data from a respective ring. FIFO 3136 stores data
from ring 3060. FIFO 3138 stores data from ring 3062. FIFO
3140 stores data from ring 3064.

FIFO request logic 3146 couples FIFOs 3136, 3138, and
3140 to FIFO 3148. FIFO request logic 3146 is also coupled
to multi-sink port interface 3114 for coupling multi-sink port
3112 to FIFO 3148. FIFO 3148 is coupled to output port 3152
to provide packet data for transmission onto communications
link 3066.

FIFO 3148 serves as a staging area for accumulating packet
data for transmission onto communications link 3066. In one
embodiment, FIFO request logic 3146 arbitrates access to
FIFO 3148 over an 8 cycle period. One cycle is dedicated to
transferring data from interface 3114 to FIFO 3148, if data
exists on interface 3114. Another cycle is reserved for trans-
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ferring data from FIFO 3148 to output port 3152. The remain-
ing cycles are shared on a round-robin basis for FIFOs 3136,
3138, and 3140 to transfer data to FIFO 3148.

In an alternate embodiment, FIFO 3148 is a multiple port
memory capable of simultaneously performing data
exchanges on 4 ports. In such an embodiment, there is no need
to arbitrate access to FIFO 3148 and FIFOs 3136, 3138, and
3140 can be eliminated ring interface 3132 directly transfers
datato FIFO 3148. In this embodiment, the number of packets
that can be simultaneously received by sink port 3052 is not
limited to 7, since FIFO 3148 is no longer shared over 8
cycles.

Output port 3152 ensures that packets are transmitted onto
communications link 3066 in accordance with the signaling
protocol employed on link 3066. In one embodiment, com-
munications link 3066 employs the following signals: 1)
TXD—an output from sink port 3052 providing a byte of
transmit data; 2) TX_EN—an output from sink port 3052
indicating TXD has valid data; 3) TX_ER—an output of sink
port 3052 indicating an error with the data transmitted by sink
port 3052; 4) TX_CLK—an output from sink port 3052 pro-
viding a timing reference for TXD; 5) Hold-off/Retry—an
input to sink port 3052 indicating the receiving port cannot
accept data (TXD).

The sink port’s Retry Mode register controls the operation
of Hold-oft/Retry (See Table I). When retry mode is enabled,
sink port 3052 aborts data transmission on communications
link 3066 when Hold-off/Retry is asserted. Sink port 3052
attempts to retransmit the aborted packet at a later time after
Hold-off/Retry is deasserted. Sink port 3052 attempts to
retransmit the packet for the time period indicated in the sink
port’s Retry Time register (See Table I). When retry mode is
not enabled, asserting Hold-off/Retry causes sink port 3052
to discontinue data transmission on communications link
3066 once the current packet transmission is complete. Sink
port 3052 resumes data transmission on communications link
66 once Hold-oft/Retry is deasserted.

In one embodiment of the present invention, the above-
described signals, except Hold-off/Retry, conform to the
transmission signals in the IEEE 802.3 Standard for GMII
Gigabit Ethernet. In one such embodiment, TX_CLK is the
same frequency as the internal clock of cross-bar switch
3010, and output port 3152 provides an inter-packet gap of 12
TX_CLK cycles between transmitted packets.

One of ordinary skill will recognize that in alternate
embodiments of the present invention sink port 3052 includes
interfaces to devices conforming to different signaling stan-
dards.

Sink port 3052 also includes content addressable memory
(“CAM”) 3144. CAM 3144 maintains a list of pointers into
FIFO 3148 for each of the data packets accepted by ring
interface 3132. Ring interface 3052 and FIFO request logic
3146 are coupled to CAM 3144 to provide information about
received packets. Based on the provided information, CAM
3144 either creates or supplies an existing FIFO pointer for
the packet data being received. Using the supplied pointers,
FIFO request logic 3146 transfers data from interface 3114
and FIFOs 3136, 3138, and 3140 to FIFO 3148. The combi-
nation of FIFO request logic 3146, CAM 3144 and FIFO
3148 form a multiple entry point FIFO—a FIFO capable of
receiving data from multiple sources, namely interface 3114
and FIFOs 3136, 3138, 3140, and 3148. Further details
regarding the operation of CAM 3144 appear below.

Sink port 3052 includes bandwidth allocation circuit 3134
to ensure quality of service by regulating sink port bandwidth
for different packet priority levels. Bandwidth allocation cir-
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cuit 3134 is coupled to exchange data with ring interface 3132
to facilitate bandwidth allocation management, which is
described in detail below.

Sink port 3052 includes configuration block 3130 for
receiving configuration packets. Configuration block 3130 is
coupled to data rings 3060, 3062, and 3064 to accept configu-
ration packets addressed to sink port 3052 in cross-bar switch
3010 (switch 3110 in FIG. 39). Configuration block 3130
contains the sink port register structure described above with
reference to Table I.

In response to a write command configuration packet, con-
figuration block 3130 modifies the register block in sink port
3052. In response to a read command configuration packet,
configuration block 3130 creates a read configuration
response packet, as described above with reference to Table V.
Configuration block 3130 is coupled to output port 3152 to
forward the read configuration response packet onto commu-
nications link 3066. Configuration block 3130 is also coupled
to Ring interface 3132, FIFO request logic 3146, bandwidth
allocation circuit 3134, and output port 3152 to provide con-
figuration settings.

FIG. 42 illustrates steps performed during the operation of
sink port 3052 to store data in FIFO 3148 in one embodiment
of the present invention. The same process is applicable to
sink ports 3054, 3055, 3056, 3057, and 3058.

When sink port 3052 detects data on data ring 3060, 3062,
or 3064, sink port 3052 determines whether the data belongs
to a configuration packet directed to sink port 3052 (step
3160). Sink port 3052 examines the incoming packet for the
following conditions: 1) Configuration Identifier signaling a
configuration packet; 2) Cross-Bar Switch Identifier identi-
fying the cross-bar switch housing sink port 3052; and 3) Port
Identifier identifying sink port 3052. If these conditions are
met, sink port 3052 identifies the packet as a configuration
packet for sink port 3052 and performs the configuration
command specified in the packet (step 3162). Otherwise, ring
interface 3132 determines whether to accept the incoming
packet data (step 3164).

In performing configuration operations (step 3162) sink
port 3052 forwards the incoming packet to configuration
block 3130. Configuration block 3130 performs the com-
mand called for in the packet. In response to a write com-
mand, configuration block 3130 modifies the configuration
registers in sink port 3052 in accordance with the packet’s
write instruction. In response to a read command, configura-
tion block 3130 generates a read configuration response
packet and forwards the packet to output port 3152 for trans-
mission onto communications link 3066.

When determining whether to accept the packet (step
3164), ring interface 3132 makes a series of evaluations. In
one embodiment of the present invention, these include veri-
fying the following conditions: 1) sink port 3052 is config-
ured to accept the packet’s Destination Address, if the First
Line data ring control signal is asserted; 2) sink port 3052 is
currently accepting data from the input port source providing
the data, if the First Line data ring control signal is not
asserted; 3) bandwidth allocation logic 3134 has not indicated
that the priority level for the received data is halted, if the First
Line data ring control signal is asserted; 4) sink port 3052 has
not already accepted the maximum allowable number of
packets for concurrent reception; 5) sink port 3052 is enabled
to accept packet data; 6) the packet is a legal packet size—in
one embodiment a legal packet size ranges from 3064 to
9,000 bytes; and 7) space is available for the packet in FIFO
3148.

Sink port 3052 rejects the incoming data if the incoming
packet data fails to meet any of the conditions (step 3182).
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Sink port 3052 issues the rejection signal to the input port that
placed the rejected packet data on data ring 3060, 3062, or
3064. The input port stops receiving the packet and makes no
more transfers of the packet’s data to data ring 3060, 3062, or
3064. When the rejected packet is targeted to multiple sink
ports, the other sink ports will also stop receiving the packet
dataonring 3060, 3062, or 3064. The loss of data causes these
ports to assert the TX_ER signal if packet transmission has
already started.

If all the acceptance conditions are met, sink port 3052
conditionally accepts the packet data. As part of initially
accepting the data, ring interface 3132 provides the data ring
control signals to CAM 3144. CAM 3144 determines whether
the data originates from a packet’s first line (step 3166). If the
data is a first line, then CAM 3144 allocates a new CAM entry
for the packet (step 3170). In one embodiment, each CAM
entry includes an address tag and a pointer into FIFO 3148.
The address tag contains the Source Identifier for the packet
from the data ring control signals. The pointer into FIFO 3148
serves as an address in FIFO 3148 for beginning to store the
received data. The address for the pointer into FIFO 3148 is
determined at a later time.

Oncea CAM locationis allocated, FIFO request logic 3146
determines whether FIFO 3148 still has room for the newly
accepted packet (step 3172). As described above, FIFO
request logic 3146 transfers data from FIFOs 3136, 3138, and
3140 to FIFO 3148. When FIFO request logic 3146 retrieves
data for a new packet from FIFO 3136, 3138, or 3140, request
logic 3146 makes this determination by comparing the bytes
available in FIFO 3148 to the Size field in the data packet
header.

IfFIFO 3148 does not have sufficient space, then sink port
3052 rejects the packet (step 3182) and purges the packet’s
allocated entry in CAM 3144. If FIFO 3144 has sufficient
space, FIFO request logic 3146 allocates a block of memory
in FIFO 3148 for the packet (3174). As part of the allocation,
FIFO request logic 3146 supplies CAM 3144 with a FIFO
pointer for the packet (step 3174). Once a block of memory in
FIFO 3148 is allocated, request logic 3146 stores the packet
data in FIFO 3148 (step 3176). As part of storing the data in
FIFO 3148, FIFO request logic 3146 provides CAM 3144
with an updated FIFO pointer to the location in FIFO 3148 for
the next data received from this packet.

If the accepted packet data is not a packet’s first line (step
3166), then CAM 3144 determines whether a FIFO pointer
for the data’s packet is maintained in CAM 3144 (step 3168).
CAM 3144 compares the Source Identifier provided by ring
interface 3132 against the address tags in CAM 3144. [f CAM
3144 doesn’t find a match, the accepted data is dropped and
the process for that packet is done in sink port 3052 (step
3178).

If CAM 3144 locates a matching source tag (step 3168),
then CAM 3144 provides the corresponding pointer into
FIFO 3148 to FIFO request logic 3146 when requested (step
3180). FIFO request logic 3146 requests the pointer after
removing data from FIFO 3136, 3138, or 3140. After obtain-
ing the FIFO pointer, FIFO request logic 3146 stores the data
in FIFO 3148 and provides CAM 3144 with an updated FIFO
pointer (step 3176).

After performing a data store, FIFO request logic 3146
determines whether the stored data is the last line of a packet
(step 3184). In one embodiment, FIFO request logic 3146
receives the Last Line data ring control signal from ring
interface 3132 to make this determination. In an alternate
embodiment, the control signals from data rings 3060, 3062,
and 3064 are carried through FIFOs 3136, 3138, and 3140,
along with their corresponding data. If the data is a packet’s
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lastline, then FIFO request logic 3146 instructs CAM 3144 to
purge the entry for the packet (step 3188). Otherwise, no
further action is taken with respect to the stored data.

Output port 3152 retrieves packet data from FIFO 3148 and
transmits packets onto communications link 3066. FIFO
request logic 3146 provides output port 3152 with a signal
indicating whether FIFO 3148 is empty. As long as FIFO
3148 is not empty, output port 3152 retrieves packet data from
FIFO 3148.

When multi-sink port 3112 wishes to transfer a data packet
to sink-port 3052, multi-sink port 3112 issues a request to
sink port 3052 on interface 3114. FIFO request logic 3146
receives the request and sink port 3052 determines whether to
accept the packet data. Sink port 3052 accepts the data if sink
port 3052 is enabled and FIFO 3148 in sink port 3052 has
capacity to handle the additional packet.

In one embodiment, sink port 3052 performs the steps
shown in FIG. 42 with the following exceptions and modifi-
cations. Sink port 3052 does not determine whether multi-
sink port 3112 is sending a configuration packet—this is not
necessary. FIFO request logic 3146 determines whether to
accept the packet from multi-sink port 3112 (step 3164),
instead of ring interface 3132 making this determination.

In response to a multi-sink request, the acceptance step
(3164) is modified. Acceptance is initially granted by FIFO
request logic 3146 asserting an acknowledgement signal on
interface 3114, if sink port 3052 is enabled. If sink port 3052
is not enabled, FIFO request logic 3146 does not assert an
acknowledgement. After sink port 3052 issues an acknowl-
edgement, multi-sink port 3112 sends packet data to FIFO
request logic 3146. The remaining process steps described in
FIG. 42 are performed for the data from multi-sink port 3112.
In one embodiment, if sink port 3052 discovers that FIFO
3148 has insufficient space (step 3172, FIG. 42), sink port
3052 withholds acknowledgement from multi-sink port
3112—sink port 3052 does not issue a rejection signal.

Sink port 3052 regulates access to FIFO 3148, so multi-
sink port 3112 and data rings 3060, 3062, and 3064 have
access for write operations and output port 3152 has access
for read operations. In one embodiment, sink port 3052 allo-
cates access to FIFO 3148 within every 8 accesses to FIFO
3148. Within every 8 accesses to FIFO 3148, sink port 3052
allocates 6 access for writing FIFO 3148 with packet data not
originating from multi-sink port 3112. Sink port 3052 allo-
cates 1 access for writing packet data originating from multi-
sink port 3112. Sink port 3052 reserves 1 cycle for output port
3152 to read data from FIFO 3148. In one such embodiment,
sink port 3052 only allows concurrent reception of 6 packets
from rings 3060, 3062, and 3064 and 1 packet from multi-sink
port interface 3114.

G. Multi-Sink Port

FIG. 43 depicts a design for multi-sink port 3112 in one
embodiment of the present invention. Multi-sink port 3112 is
very similar to the sink port 3052 architecture and operation
shown in FIGS. 41 and 42. The elements in FIG. 43 with the
same reference numbers as elements in FIG. 41 operate the
same, with the following exception. Ring interface 3132 does
not accept configuration packets targeting ports other than
multi-sink port 3112.

In multi-sink port 3112, sink request port 3183 and lookup
table 3185 replace output port 3152 from sink port 3052.
Lookup table 3185 contains the contents of the Multicast
Registers described above with reference to the configuration
registers for multi-sink port 3112 (Table II)—configuration
block 3130 passes Multicast Register information to look-up
table 3185 and maintains the other configuration registers for
multi-sink port 3112. Sink request port 3183 is coupled to
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FIFO 3148 to retrieve packet data and FIFO request logic
3146 to receive a signal indicating whether FIFO 3148 is
empty. Sink request port 3183 retrieves data from FIFO 3148
when FIFO 3148 is not empty. Sink request port 3183 for-
wards the retrieved packet data to sink ports targeted to
receive the packet data. Sink request port 3183 is coupled to
lookup table 3185 to identify the sink ports targeted by the
packet.

Sink request port 3183 supplies packet data on sink port
interface 3114. Sink port interface 3114 includes 2 separate
buses. One bus carries packet data to sink ports that first
respond to a data transfer request from multi-sink port 3112.
The other bus provides the same packet data to sink ports that
accept the request from multi-sink port 3112 at a later time. In
one embodiment, each bus in interface 3114 includes an 8
byte wide data path and the control signals identified above
for data rings 3060, 3062, and 3064. In order to establish
communication with the sink ports, interface 3114 also
includes request and acknowledgement signals.

FIG. 44 illustrates a series of steps performed by sink
request port 3183 to transfer packets to sink ports in one
embodiment of the present invention. Prior to the process
shown in FIG. 44, multi-sink port 3112 stores data into FIFO
3148 in port 3112 by employing the process described above
with reference to FIG. 42. Sink request port 3183 retrieves a
data packet from FIFO 3148 and determines the targeted sink
ports for the packet (step 3190). Sink request port 3183 pro-
vides the packet’s Destination Address to lookup table 3185.
Lookup table 3185 employs a portion of the Destination
Address to identify the targeted sink ports. In one embodi-
ment, lookup table 3183 employs the 6 least significant bits of
the Destination Address to select a Multicast Register, which
identifies the sink ports corresponding to the Destination
Address.

Sink request port 3183 asserts a request to the targeted sink
ports on interface 3114 (step 3192). Sink request port 3183
then waits for a sink port acknowledgement (step 3194). Sink
request port 3183 only allows the request to remain outstand-
ing for a predetermined period of time. In one embodiment, a
user configures this time period to either 1,500 or 9,000 cycles
of the internal clock for cross-bar switch 3110. While the
request is pending without acknowledgement, sink request
port 3183 monitors the elapsed request time to determine
whether the predetermined time period has elapsed (step
3196). As long as the time period has not elapsed, sink request
port 3183 continues to await an acknowledgement (step
3194). If the predetermined period of time elapses, sink
request port 3183 removes the requests and the multi-sink
data packet is not forwarded (step 3210).

After an acknowledgement is received (step 3194), sink
request port 3183 transmits packet data to the accepting sink
ports on the first bus in interface 3114, along with the speci-
fied control signals (step 3198). After initiating the packet
data transmission, sink request port 3183 determines whether
more sink port requests are outstanding (step 3200). If sink
request port 3183 detects that all requested sink targets have
provided an acknowledgement (step 3200), then the multi-
sink data transmission process is over

If sink request port 3183 determines that not all requested
sink ports have provided an acknowledgement (step 3200),
port 3183 waits for the predetermined time period to elapse
(step 3202). After the time period elapses, sink request port
3180 determines whether any additional sink ports have
acknowledged the request (step 3204). For each sink port
issuing a late acknowledgement, sink request port transmits
packet data to the port over the second bus in interface 3114,
along with data ring control signals (step 3206).
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If there are no late acceptances, sink request port 3183
determines whether any ports failed to respond to the pending
request (step 3208). Sink request port 3183 makes this same
determination after initiating packet data transmission to the
late accepting sink ports. For each sink port not acknowledg-
ing the request, sink request port 3183 removes the request
(step 3210). If there are no sink ports failing to acknowledge
the request, then the multi-sink port’s requested data transfer
is complete.

Multi-sink port 3112 repeats the above-described process
for all data stored in FIFO 3148.

H. Bandwidth Allocation

Bandwidth allocation circuit 3134 (FIG. 41) monitors traf-
fic flowing through sink port 3052 and manages the band-
width allocated to different data packet priority levels. In
multi-sink port 3112, bandwidth allocation circuit 3134 (FIG.
43) performs the same function. The operation of bandwidth
allocation circuit 3134 is described below with reference to
sink port 3052. The same operation applies to sink ports 3054,
3055, 3056, 3057, and 3058, as well as multi-sink port 3112.

Data packets arrive at cross-bar switch 3010 with a Priority
Level field in their headers (See Table III). Bandwidth allo-
cation circuit 3134 instructs ring interface circuit 3132 to
reject packets with priority levels receiving more bandwidth
than allotted. Ring interface 3132 employs these instructions
to reject new incoming packets during the acceptance step
(step 3164) described above with reference to FIG. 42. In one
embodiment, bandwidth allocation circuit 3134 doesn’t call
for the rejection of any priority levels until the number of
bytes in FIFO 3148 exceeds a predetermined threshold and
multiple priority levels appear at ring interface 3132.

FIG. 45 illustrates a series of steps performed by band-
width allocation circuit 3134 in sink port 3052 and multi-sink
port 3112 in one embodiment of the present invention. In
configuring the sink port or multi-sink port for bandwidth
allocation, a user configures the port to have three threshold
values for FIFO 3148 (See Tables I and II—FIFO Thresholds
field). A user provides these threshold values in a write com-
mand configuration packet for entry into the port’s configu-
ration registers.

As packets pass through ring interface 3132, bandwidth
allocation circuit 3134 records the amount of packet traffic for
each priority level for a fixed time window (step 3220). Band-
width allocation circuit 134 also maintains historic traffic
counts for each priority level. In one embodiment, the time
window is approximately half the size of FIFO 3148 (ap-
proximately 16K bytes in one embodiment), and four histori-
cal time window periods are maintained. In alternate embodi-
ments, the time window period and the number of historical
time window periods are modified. A greater number of his-
torical time periods decreases the significance of the traffic in
the current time period in allocating bandwidth. In one
embodiment, there are 4 possible priority levels, and the
priority level for a packet appears in the packet’s header (See
Table III). In one such embodiment, bandwidth allocation
circuit 3134 records packet traffic for each priority level using
the Size field in packet headers.

Bandwidth allocation circuit 3134 calculates a weighted
average bandwidth (“WAB”) for each priority level (step
3222). Sink port 3052 and multi-sink port 3112 are config-
ured to have a Priority Weighting Value (“PWV”) for each
priority level (See Tables I and II). Bandwidth allocation
circuit 3134 calculates the WAB for each priority by dividing
the sum of the priority’s recorded traffic for the current and
historical time window periods by the priority’s PWV.

After performing WAB calculations (step 3222), band-
width allocation circuit 3134 makes a series of determina-
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tions. Bandwidth allocation circuit 3134 determines whether
the lowest FIFO threshold value (Threshold 1) has been sur-
passed and more than 1 WAB value is greater than 0—indi-
cating that more than 1 priority level appears in the received
data packets (step 3224). If these conditions are both true,
bandwidth allocation circuit 3134 instructs ring interface
3132 to reject new incoming packets with a priority level
matching the priority level with the highest WAB value (step
3226). If either the FIFO threshold or WAB condition isn’t
met, bandwidth allocation circuit 3134 does not issue the
rejection instruction.

Bandwidth allocation circuit 3134 also determines
whether the second highest FIFO threshold value (Threshold
2) has been surpassed and more than 2 WAB values are
greater than O0—indicating that more than 2 priority levels
appear in the received data packets (step 3228). If these con-
ditions are both true, bandwidth allocation circuit 3134
instructs ring interface 3132 to reject new incoming packets
with a priority level matching the priority level with the
second highest WAB value (step 3230). If either condition is
not met, bandwidth allocation circuit 3134 does not issue the
rejection instruction.

Bandwidth allocation circuit 3134 also determines
whether the highest FIFO threshold value (Threshold 3) has
been surpassed and more than 3 WAB values are greater than
O—indicating that more than 3 priority levels appear in the
received data packets (step 3232). If these conditions are both
true, bandwidth allocation circuit 3134 instructs ring inter-
face 3132 to reject new incoming packets with a priority level
matching the priority level with the third highest WAB value
(step 3234). If either condition fails, bandwidth allocation
circuit 3134 does not issue the rejection instruction. In one
embodiment, bandwidth allocation circuit 3134 performs the
above-described tests and issues rejection instructions on a
free running basis.

Ring interface 3132 responds to a rejection instruction
from bandwidth allocation circuit 3134 by refusing to accept
packets with identified priority levels. Ring interface 3132
continues rejecting the packets for a predetermined period of
time. In one embodiment, the predetermined time period is
6000 cycles of the port’s clock.

The following provides an example of bandwidth alloca-
tion circuit 3134 in operation. FIFO 3148 has 32,000 bytes,
and the FIFO thresholds are as follows: 1) Threshold 1 is
18,000 bytes; 2) Threshold 2 is 20,000 bytes; and 3) Thresh-
old 3 is 28,000 bytes. The priority weighting values are as
follows: 1) PWV for Priority 1is 16; 2) PWV for Priority 2 is
8;3)PWYV for Priority 3 is 4; and 4) PWV for Priority 4 is 128.

The sum of the recorded traffic in the current time window
and four historical time windows for each priority is 128
bytes, and FIFO 3148 contains 19,000 bytes. The WAB val-
ues are as follows: 1) WAB for Priority 1 is 8; 2) WAB for
Priority 2 is 16; 3) WAB for Priority 3 is 32; and 4) WAB for
Priority 4 is 1. This results in bandwidth allocation circuit
3134 instructing ring interface 3132 to reject packets with
priority level 3—the priority level with the highest WAB
value.

The foregoing detailed description of the invention has
been presented for purposes of illustration and description. It
is not intended to be exhaustive or to limit the invention to the
precise form disclosed. Many modifications and variations
are possible in light of the above teaching. The described
embodiments were chosen in order to best explain the prin-
ciples of the invention and its practical application to thereby
enable others skilled in the art to best utilize the invention in
various embodiments and with various modifications as are
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suited to the particular use contemplated. It is intended that
the scope of the invention be defined by the claims appended
hereto.

The invention claimed is:
1. A method comprising:
receiving, with a flow control element of a data center, a
plurality of packet flows from a network, wherein the
data center includes a plurality of compute elements
interconnected by a hardware switching fabric to com-
municate packet data between the compute elements,
and wherein the set of compute elements is arranged in
a plurality of processing pipelines to provide a set of
network services;
identifying, with the flow control element, each of the
packet flows as being associated with a subscriber and
determining a subset of one or more of the network
services that are required to be applied to each of the
packet flows based on the identified subscriber;

selecting, with the flow control element and for each of the
packet flows, one of the processing pipelines based on
the subset of network services for the subscriber associ-
ated with the packet flow; and

distributing, with the flow control element, each of the

plurality of packet flows to the compute elements in
accordance with the processing pipeline selected for the
packet flow to provide the subset of network services
determined for the subscriber associated with the packet
flow.

2. The method of claim 1, further comprising storing a
forwarding table within the flow control element that defines
the processing pipelines as a plurality of different routes
through the compute elements, the routes defining different
sets of one or more of the network services and specifying an
order for applying the network services.

3. The method of claim 2, further comprising:

in response to receiving a packet of one of the packet flows,

selecting, with the flow control element, one of the
routes based on the subset of network services deter-
mined as associated with the subscriber identified for the
packet flow; and

attaching a route tag to the packet to identify the selected

route.

4. The method of claim 3,

forwarding the packet to a first one of the compute ele-

ments in the selected processing pipeline based on the
route tag; and

forwarding, in accordance with the route tag, output from

the first one of the compute elements in the selected
processing pipeline to a next compute element in the
selected processing pipeline along the selected route
through the compute elements for performing the subset
of'the services associated with the identified subscriber.

5. The method of claim 1, wherein the set of network
services performed by the compute elements includes one or
more of firewall protection, Network Address Translation,
Internet Protocol forwarding, bandwidth management,
Secure Sockets Layer operations, Web caching, Web switch-
ing, and virtual private networking.

6. The method of claim 1, wherein each of said compute
elements is optimized to perform one of said set of services.

7. The method of claim 1, wherein each of said compute
elements performs all said services in said set.

8. The method of claim 1, further comprising:

storing one or more flow tables that defines the processing

pipelines as a plurality of different routes through the
compute elements, the routes defining different sets of
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one or more of the network services and specifying an
order for applying the network services;

distributing, the flow control element, to the processing

pipelines packet data for those packet flows having exist-
ing entries within the one or more flow tables, and

for new packet flows, applying policies associated with the

subscribers to set up the processing pipelines to apply
the network services to the packet data for the subscrib-
ers.
9. The method of claim 1, wherein distributing comprises
distributing, the flow control element, packets of the same
packet flow to the same processing pipeline of the compute
elements.
10. The method of claim 1, wherein the compute elements
comprise computing blades, general-purpose computers or
servers.
11. A non-transitory computer-readable storage medium
comprising instructions to cause one or more programmable
processors of a flow control element of a data center to:
receive, with the flow control element of the data center, a
plurality of packet flows from a network, wherein the
data center includes a plurality of compute elements
interconnected by a hardware switching fabric to com-
municate packet data between the compute elements,
and wherein the set of compute elements is arranged in
a plurality of processing pipelines to provide the set of
network services;
identify, with the flow control element, each of the packet
flows as being associated with a subscriber and deter-
mining a subset of one or more of the network services
that are required to be applied to each of the packet flows
based on the identified subscriber;
select, with the flow control element, one of the processing
pipelines for each of the packet flows based on the subset
of network services identified for the subscriber; and

distribute, with the flow control element, each of the plu-
rality of packet flows to the compute elements in accor-
dance with the processing pipeline selected for the
packet flow to provide the subset of network services
determined for the subscriber identified for the packet
flow.

12. The non-transitory computer-readable storage medium
of'claim 11, further comprising instructions that cause the one
or more processors to store a forwarding table within the flow
control element that defines the processing pipelines as a
plurality of different routes through the compute elements,
the routes defining different sets of one or more of the network
services and specifying an order for applying the network
services.

13. The non-transitory computer-readable storage medium
of'claim 12, further comprising instructions that cause the one
Or mMore processors to:

in response to receiving a packet of one of the packet flows,

select, with the flow control element, one of the routes
based on the subset of network services determined as
associated with the subscriber identified for the packet
flow; and

attach a route tag to the packet to identify the selected route.

14. The non-transitory computer-readable storage medium
of'claim 13, further comprising instructions that cause the one
Or mMore processors to:

forward the packet to a first one of the compute elements in

the selected processing pipeline based on the route tag;
and

forward, in accordance with the route tag, output of the first

one of the compute elements in the processing pipeline
to a next compute element in the processing pipeline
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along the selected route through the compute elements
for performing the subset of the services associated with
the identified subscriber.

15. The non-transitory computer-readable storage medium
of'claim 11, wherein the set of network services performed by
the compute elements includes one or more of firewall pro-
tection, Network Address Translation, Internet Protocol for-
warding, bandwidth management, Secure Sockets Layer
operations, Web caching, Web switching, and virtual private
networking.

16. The non-transitory computer-readable storage medium
of claim 11, wherein each of said compute elements is opti-
mized to perform one of said set of services.

17. The non-transitory computer-readable storage medium
of'claim 11, wherein each of said compute elements performs
all said services in said set.

18. The non-transitory computer-readable storage medium
of'claim 11, further comprising instructions that cause the one
Or more processors to:
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store one or more flow tables that defines the processing
pipelines as a plurality of different routes through the
compute elements, the routes defining different sets of
one or more of the network services and specifying an
order for applying the network services;

distribute, the flow control element, to the processing pipe-

lines packet data for those packet flows having existing
entries within the one or more flow tables, and

for new packet flows, apply policies associated with the

subscribers to set up the processing pipelines to apply
the network services to the packet data for the subscrib-
ers.

19. The non-transitory computer-readable storage medium
of'claim 11, further comprising instructions that cause the one
or more processors to distributing, the flow control element,
packets of the same packet flow to the same processing pipe-
line of the compute elements.

#* #* #* #* #*



